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Abstract

This paper reports our first set of results on managing uncertainty in data integration. We
posit that data-integration systems need to handle uncertainty at three levels, and do so in a
principled fashion. First, the semantic mappings between the data sources and the mediated
schema may be approximate because there may be too many of them to be created and main-
tained or because in some domains (e.g., bioinformatics) it is not clear what the mappings should
be. Second, queries to the system may be posed with keywords rather than in a structured form.
Third, the data from the sources may be extracted using information extraction techniques and
so may yield erroneous data.

As a first step to building such a system, we introduce the concept of probabilistic schema
mappings and analyze their formal foundations. We show that there are two possible semantics
for such mappings: by-table semantics assumes that there exists a correct mapping but we don’t
know what it is; by-tuple semantics assumes that the correct mapping may depend on the par-
ticular tuple in the source data. We present the query complexity and algorithms for answering
queries in the presence of approximate schema mappings, and we describe an algorithm for
efficiently computing the top-k answers to queries in such a setting.

1 Introduction

Data integration and exchange systems offer a uniform interface to a multitude of data sources and
the ability to share data across multiple systems. These systems have recently enjoyed significant
research and commercial success [15, 13] Current data integration systems are essentially a natural
extension of traditional database systems in that queries are specified in a structured form and
data are modeled in one of the traditional data models (relational, XML). In addition, the data
integration system has exact knowledge of how the data in the sources map to the schema used by
the data integration system.

We argue that as the scope of data integration applications broadens, such systems need to
be able to model uncertainty at their core. Uncertainty can arise for multiple reasons in data
integration. First, the semantic mappings between the data sources and the mediated schema may
be approximate. For example, in an application like Google Base or when mapping millions of
sources on the deep web [20], we cannot imagine specifying exact mappings. In some domains (e.g.,
bioinformatics), we do not necessarily know what the exact mapping is. Second, if the intended
users of the application are not necessarily familiar with schemata, or if the domain of the system
is too broad to offer form-based query interfaces (such as web forms), we need to support keyword
queries. Hence, a second source of uncertainty is the transformation between keyword queries and
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a set of candidate structured queries. Finally, data is often extracted from unstructured sources
using information extraction techniques. Since these techniques are approximate, the data obtained
from the sources may be uncertain.

Dataspace Support Platforms [14] envision data integration systems where sources are added
with no effort and the system is constantly evolving in a pay-as-you-go fashion to improve the
quality of semantic mappings and query answering. Enabling data integration with uncertainty is
a key technology to supporting dataspaces.

This paper takes a first step towards the goal of data integration with uncertainty. We first
describe how the architecture of such a system differs from a traditional one (Section 2). At the
core, the system models tuples and semantic mappings with probabilities associated with them.
Query answering ranks answers and typically tries to obtain the top-k results to a query. These
changes lead to a requirement for a new kind of adaptivity in query processing.

We then focus on one core component of data integration with uncertainty, namely probabilistic
schema mappings (Section 3). Semantic mappings are the component of a data integration system
that specify the relationship between the contents of the different sources. The mappings enable
the data integration to reformulate a query posed over the mediated schema into queries over the
sources [17, 12]. We introduce probabilistic schema mappings, and describe how to answer queries
in their presence.

We define probabilistic schema mapping as a set of possible (ordinary) mappings between a
source schema and a target schema, where each possible mapping has an associated probability. To
focus on the key issues, we begin by considering a simple class of mappings, where each mapping
describes a set of correspondences between the attributes of a source table and the attributes
of a target table. We argue that there are two possible interpretations of probabilistic schema
mappings. In the first, which we formalize as by-table semantics, we assume there exists a single
correct mapping between the source and the target, but we don’t know which one it is. In the
second, called by-tuple semantics, the correct mapping may depend on the particular tuple in the
source to which it is applied. In both cases, the semantics of query answers are a generalization of
certain answers [1] for data integration systems.

We describe algorithms for answering queries in the presence of probabilistic schema mappings
and then analyze the computational complexity of answering queries (Section 4). We show that
the data complexity of answering queries in the presence of probabilistic mappings is PTIME for
by-table semantics and #P-complete for by-tuple semantics. We identify a large subclass of real-
world queries for which we can still obtain all the by-tuple answers in PTIME. We then describe
algorithms for finding the top-k answers to a query (Section 5).

The size of a probabilistic mapping may be quite large, since it essentially enumerates a prob-
ability distribution by listing every combination of events in the probability space. In practice, we
can often encode the same probability distribution much more concisely. Our next contribution
(Section 6) is to identify two concise representations of probabilistic mappings for which query
answering can be done in PTIME in the size of the mapping. We also examine the possibility of
representing a probabilistic mapping as a Bayes Net, but show that query answering may still be
exponential in the size of a Bayes Net representation of a mapping.

We then consider using probabilistic mappings in the scenario of data exchange (Section 7), and
show that we can create a probabilistic database representing a core universal solution in linear
time. As in the case of non-probabilistic mappings, the core universal solution can be used to find
all the answers to a given query.

Finally, we consider several more powerful mapping languages, such as complex mappings, where
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Figure 1: Architecture of a data-integration system that handles uncertainty.

the correspondences are between sets of attributes, and conditional mappings, where the mapping
is conditioned on a property of the tuple to which it is applied (Section 8).

2 Overview of the System

This section describes the requirements from a data integration system that supports uncertainty
and the overall architecture of the system. We frame our specific contributions in context of this
architecture.

2.1 Uncertainty in Data Integration

A data integration system needs to handle uncertainty at three levels.

Uncertain schema mappings: Data integration systems rely on schema mappings for specifying
the semantic relationships between the data in the sources and the terms used in the mediated
schema. However, schema mappings can be inaccurate. In many applications it is impossible to
create and maintain precise mappings between data sources. This can be because the users are not
skilled enough to provide precise mappings, such as in personal information management [7], be-
cause people do not understand the domain well and thus do not even know what correct mappings
are, such as in bioinformatics, or because the scale of the data prevents generating and maintaining
precise mappings, such as in integrating data of the web scale [20]. Hence, in practice, schema
mappings are often generated by semi-automatic tools, and not necessarily verified by domain
experts.

Uncertain data: By nature, data integration systems need to handle uncertain data. One reason
for uncertainty is that data is often extracted from unstructured or semi-structured sources by
automatic methods (e.g., HTML pages, emails, blogs). A second reason is that data may come
from sources that are unreliable or not up to date.

Uncertain queries: In some data integration applications, especially on the web, queries will be
posed as keywords rather than as structured queries against a well defined schema. The system
needs to translate these queries into some structured form so they can be reformulated with respect
to the data sources. At this step, the system may generate multiple candidate structured queries
and have some uncertainty about which is the real intent of the user.
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2.2 System Architecture

Given the above requirements, we describe the architecture of a data integration system that
manages uncertainty at its core. We describe the system by contrasting it to a traditional data
integration system.

The first and most fundamental characteristic of this system is that it is based on a probabilistic
data model. This means two things. First, as we process data in the system we attach probabilities
to each tuple. Second, and the focus of this paper, is that schema mappings are also associated with
probabilities, modeling our uncertainty about which ones are correct. We note that the probabilities
associated with tuples, mappings, and answers are mostly internal to the system, and are not meant
to be exposed to users. Typically, we will use these probabilities to rank answers.

Second, whereas traditional data integration systems begin by reformulating a query onto the
schemas of the data sources, a data integration system with uncertainty needs to first reformulate
a keyword query into a set of candidate structured queries. We refer to this step as keyword
reformulation. Note that keyword reformulation is different from techniques for keyword search on
structured data (e.g., [16, 2]) in that (a) it does not assume access to all the data in the sources or
that the sources support keyword search, and (b) it tries to distinguish different structural elements
in the query in order to pose more precise queries to the sources (e.g., realizing that in the keyword
query “chicago weather”, “weather” is an attribute label and “chicago” is an instance name). That
being said, keyword reformulation should benefit from techniques that support answering keyword
search on structured data.

Third, the query answering model is different. Instead of necessarily finding all answers to a
given query, our goal is typically to find the top-k answers, and rank these answers most effectively.

The final difference from traditional data integration systems is that our query processing will
need to be more adaptive than usual. Instead of generating a query answering plan and executing
it, the steps we take in query processing will depend on results of previous steps. We note that
adaptive query processing has been discussed quite a bit in data integration [18], where the need
for adaptivity arises from the fact that data sources did not answer as quickly as expected or that
we did not have accurate statistics about their contents to properly order our operations. In our
work, however, the goal for adaptivity is to get the answers with high probabilities faster.

The architecture of the system is shown in Figure 1. The system contains a number of data
sources and a mediated schema. When the user poses a query Q, which can be either a structured
query on the mediated schema, or a keyword query, the system returns a set of answer tuples,
each with a probability. If Q is a keyword query, the system first performs keyword reformulation
to translate it into a set of candidate structured queries on the mediated schema. Otherwise, the
candidate query is Q itself.

Consider how the system answers the candidate queries, and assume the queries will not involve
joins over multiple sources. For each candidate structured query Q0 and a data source S, the system
reformulates Q0 according to the schema mapping (which can be uncertain) between S’s schema
and the mediated schema, sends the reformulated query (or queries) to S, retrieving the answers.
If the user asks for all the answers to the query, then the reformulated query is typically a query
with grouping and aggregation. If S does not support grouping and aggregation, then grouping
and aggregation can be processed in the integration system. If the user asks for top-k answers, then
query processing is more complex. The system reformulates the query into a set of queries, and
uses a middle layer to decide at runtime which queries are critical to computing the top-k answers
and sends the appropriate queries to S. Note that there can be multiple iterations of deciding the
promising reformulated queries and retrieving answers. Furthermore, the system can even decide
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Possible Mapping Prob

{(pname, name), (email-addr, email),
m1 = (current-addr, mailing-addr), 0.5

(permanent-addr, home-address)}

{(pname, name), (email-addr, email),
m2 = (permanent-addr, mailing-addr), 0.4

(current-addr, home-address)}

m3 = {(pname, name), (email-addr, mailing-addr), 0.1
(current-addr, home-addr)}

(a)

DS =

pname email-addr current-addr permanent-addr

Alice alice@ Mountain View Sunnyvale
Bob bob@ Sunnyvale Sunnyvale

(b)
Tuple Prob

(’Sunnyvale’) 0.9
(’Mountain View’) 0.5

(’alice@’) 0.1
(’bob@’) 0.1

(c)

Figure 2: The running example: (a) a probabilistic schema mapping between S and T ; (b) a source
instance DS ; (c) the answers of Q over DS with respect to the probabilistic mapping.

which data sources are more relevant and prioritize the queries to those data sources. Finally, if the
data in the sources are uncertain, then the sources will return answers with probabilities attached
to them.

After receiving answers from different data sources, the system combines them to get one single
set of answer tuples. For example, if the data sources are known to be independent of each other,
and we obtain tuple t from n data sources with probabilities p1, . . . , pn respectively, then in the
final answer set t has probability 1−Πn

i=1(1−pi). If we know that some data sources are duplicates
or extensions of others, a different combination function needs to be used.

2.3 Handling Uncertainty in Mappings

As a first step towards developing such a data integration system, we introduce in this paper
probabilistic schema mappings, and show how to answer queries in their presence. Before the
formal discussion, we illustrate the main ideas with an example.

Example 2.1. Consider a data source S, which describes a person by her email address, current
address, and permanent address, and the mediated schema T , which describes a person by her name,
email, mailing address, home address and office address:

S=(pname, email-addr, current-addr, permanent-addr)

T=(name, email, mailing-addr, home-addr, office-addr)

A semi-automatic schema-mapping tool may generate three possible mappings between S and T ,
assigning each a probability. Whereas the three mappings all map pname to name, they map other
attributes in the source and the target differently. Figure 2(a) describes the three mappings using
sets of attribute correspondences. For example, mapping m1 maps pname to name, email-addr to
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email, current-addr to mailing-addr, and permanent-addr to home-addr. Because of the uncertainty
on which mapping is correct, we consider all of these mappings in query answering.

Suppose the system receives a query Q composed on the mediated schema and asking for people’s
mailing addresses:

Q: SELECT mailing-addr FROM T

Using the possible mappings, we can reformulate Q into different queries:

Q1: SELECT current-addr FROM S

Q2: SELECT permanent-addr FROM S

Q3: SELECT email-addr FROM S

If the user requires all possible answers, the system generates a single aggregation query based
on Q1, Q2 and Q3 to compute the probability of each returned tuple, and sends the query to the
data source. Suppose the data source contains a table DS as shown in Figure 2(b), the system will
retrieve four answer tuples, each with a probability, as shown in Figure 2(c).

If the user requires only the top-1 answer (i.e., the answer tuple with the highest probability),
the system decides at runtime which reformulated queries to execute. For example, after executing
Q1 and Q2 at the source, the system can already conclude that (‘Sunnyvale’) is the top-1 answer
and can skip query Q3. �

2.4 Source of probabilities

A critical issue in any system that manages uncertainty is whether we have a reliable source
of probabilities. Whereas obtaining reliable probabilities for such a system is one of the most
interesting areas for future research, there is quite a bit to build on. For keyword reformulation, it
is possible to train and test reformulators on large numbers of queries such that each reformulation
result is given a probability based on its performance statistics. In the case of schema matching, it is
standard practice for schema matchers to also associate numbers with the candidates they propose.
The issue here is that the numbers are meant only as a ranking mechanism rather than true
probabilities. However, as schema matching techniques start looking a larger number of schemas,
one can imagine ascribing probabilities (or approximations thereof) to their measures. Finally,
information extraction techniques are also often based on statistical machine learning methods,
thereby lending their predictions a probabilistic interpretation.

3 Probabilistic Schema Mapping

In this section we formally define the semantics of probabilistic schema mappings and the query
answering problems we consider. Our discussion is in the context of the relational data model.
A schema contains a finite set of relations. Each relation contains a finite set of attributes and
is denoted by R = 〈r1, . . . , rn〉. An instance DR of R is a finite set of tuples, where each tuple
associates a value with each attribute in the schema.

We consider select-project-join (SPJ) queries in SQL. Note that answering such queries is in
PTIME in the size of the data.

3.1 Schema Mappings

We begin by reviewing non-probabilistic schema mappings. The goal of a schema mapping is to
specify the semantic relationships between a source schema and a target schema. We refer to the
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source schema as S̄, and a relation in S̄ as S = 〈s1, . . . , sm〉. Similarly, we refer to the target schema
as T̄ , and a relation in T̄ as T = 〈t1, . . . , tn〉.

The common formalism for schema mappings, GLAV, is based on expressions of the form

m : ∀x(φ(x) → ∃yψ(x,y)).

In the expression, φ is the body of a conjunctive query over S̄ and ψ is the body of a conjunctive
query over T̄ . A pair of instances DS and DT satisfies a GLAV mapping m if for every assignment
of x in DS that satisfies φ there exists an assignment of y in DT that satisfies ψ.

We consider a limited form of GLAV mappings where each side of the mapping involves only
projection queries on a single table. These mappings have also been referred to as schema matching
in the literature [22]. Specifically, we consider GLAV mappings where (1) φ (resp. ψ) is an atomic
formula over S (resp. T ), (2) the GLAV mapping does not include constants, and (3) each variable
occurs at most once on each side of the mapping. We consider this class of mappings because they
already expose many of the novel issues involved in probabilistic mappings and because they are
quite common in practice. We also note that many of the concepts we define apply to a broader
class of mappings, which we will discuss in detail in Section 8.

Given these restrictions, we can define our mappings in terms of attribute correspondences. An
attribute correspondence is of the form cij = (si, tj), where si is a source attribute in the schema
S and tj is a target attribute in the schema T . Intuitively, cij specifies that there is a relationship
between si and tj. In practice, a correspondence also involves a function that transforms the value
of si to the value of tj. For example, the correspondence (c-degree, temperature) can be specified
as temperature=c-degree∗1.8 + 32, describing a transformation from Celsius to Fahrenheit. These
functions are irrelevant to our discussion, and therefore we omit them. Formally, we define relation
mappings and schema mappings as follows.

Definition 3.1 (Schema Mapping). Let S̄ and T̄ be relational schemas. A relation mapping M
is a triple (S, T,m), where S is a relation in S̄, T is a relation in T̄ , and m is a set of attribute
correspondences between S and T .

When each source and target attribute occurs in at most one correspondence in m, we call M a
one-to-one relation mapping.

A schema mapping M is a set of one-to-one relation mappings between relations in S̄ and in
T̄ , where every relation in either S̄ or T̄ appears at most once. �

Example 3.2. Consider the mappings in Example 2.1. We can view m1 as a GLAV mapping:

∀n, e, c, p(S(n, e, c, p) → ∃o(T (n, e, c, p, o)))

The database in Figure 2(b) (repeated in Figure 3(a)) and the database in Figure 3(b) satisfy m1.
�

3.2 Probabilistic Schema Mappings

Intuitively, a probabilistic schema mapping describes a probability distribution of a set of possible
schema mappings between a source schema and a target schema.

Definition 3.3 (Probabilistic Mapping). Let S̄ and T̄ be relational schemas. A probabilistic map-
ping (p-mapping), pM , is a triple (S, T,m), where S ∈ S̄, T ∈ T̄ , and m is a set {(m1,Pr(m1)), . . . ,
(ml,Pr(ml))}, such that
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pname email-addr permanent-addr current-addr

Alice alice@ Mountain View Sunnyvale
Bob bob@ Sunnyvale Sunnyvale

(a)

name email mailing-addr home-addr office-addr

Alice alice@ Mountain View Sunnyvale office
Bob bob@ Sunnyvale Sunnyvale office

(b)

name email mailing-addr home-addr office-addr

Alice alice@ Sunnyvale Mountain View office
Bob email bob@ Sunnyvale office

(c)
Tuple Prob

(’Sunnyvale’) 0.9
(’Mountain View’) 0.5

(’alice@’) 0.1
(’bob@’) 0.1

(d)

Tuple Prob

(’Sunnyvale’) 0.94
(’Mountain View’) 0.5

(’alice@’) 0.1
(’bob@’) 0.1

(e)

Figure 3: Example 3.10: (a) a source instance DS ; (b) a target instance that is by-table consistent
with DS ; (c) a target instance that is by-tuple consistent with DS ; (d) Qtable(DS); (e) Qtuple(DS).

• for i ∈ [1, l], mi is a one-to-one mapping between S and T , and for every i, j ∈ [1, l], i 6= j ⇒
mi 6= mj .

• Pr(mi) ∈ [0, 1] and
∑l

i=1 Pr(mi) = 1.

A schema p-mapping, pM , is a set of p-mappings between relations in S̄ and in T̄ , where every
relation in either S̄ or T̄ appears in at most one p-mapping. �

Note that we assume the possible mappings in a p-mapping are independent. We refer to a
non-probabilistic mapping as an ordinary mapping. A schema p-mapping may contain both p-
mappings and ordinary mappings. Example 2.1 shows a p-mapping (see Figure 2(a)) that contains
three possible mappings.

3.3 Semantics of Probabilistic Mappings

Intuitively, a probabilistic schema mapping models the uncertainty about which of the mappings
in pM is the correct one. When a schema matching system produces a set of candidate matches,
there are two ways to interpret the uncertainty: (1) a single mapping in pM is the correct one
and it applies to all the data in S, or (2) multiple mappings are correct and each suitable for a
subset of tuples in S, though it is not known which mapping is the right one for a specific tuple.
Example 2.1 illustrates the first interpretation. For the same example, the second interpretation is
equally valid: some people may choose to use their current address as mailing address while others
use their permanent address as mailing address; thus, for different tuples we may apply different
mappings, so the correct mapping depends on the particular tuple.

This paper analyzes query answering under both interpretations. We refer to the first interpre-
tation as the by-table semantics and to the second one as the by-tuple semantics of probabilistic
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mappings. We are not trying to argue for one interpretation over the other. The needs of the
application should dictate the appropriate semantics. Furthermore, our complexity results, which
will show advantages to by-table semantics, should not be taken as an argument in the favor of
by-table semantics.

We next define the semantics of p-mappings in detail and the definitions for schema p-mappings
are the obvious extensions. The semantics of p-mappings is defined as a natural extension of that
of ordinary mappings, which we review now. A mapping defines a relationship between instances
of S and instances of T that are consistent with the mapping.

Definition 3.4 (Consistent Target Instance). Let M = (S, T,m) be a relation mapping and DS be
an instance of S.

An instance DT of T is said to be consistent with DS and M , if for each tuple ts ∈ DS, there
exists a tuple tt ∈ DT , such that for every attribute correspondence (as, at) ∈ m, the value of as in
ts is the same as the value of at in tt. �

For a relation mapping M and a source instance DS , there can be an infinite number of target
instances that are consistent with DS and M . We denote by TarM (DS) the set of all such target
instances. The set of answers to a query Q is the intersection of the answers on all instances in
TarM (DS). The following definition is from [1].

Definition 3.5 (Certain Answer). Let M = (S, T,m) be a relation mapping. Let Q be a query
over T and let DS be an instance of S.

A tuple t is said to be a certain answer of Q with respect to DS and M , if for every instance
DT ∈ TarM (DS), t ∈ Q(DT ). �

By-table semantics: We now generalize these notions to the probabilistic setting, beginning with
the by-table semantics. Intuitively, a p-mapping pM describes a set of possible worlds, each with
a possible mapping m ∈ pM . In by-table semantics, a source table can fall in one of the possible
worlds; that is, the possible mapping associated with that possible world applies to the whole
source table. Following this intuition, we define target instances that are consistent with the source
instance.

Definition 3.6 (By-table Consistent Instance). Let pM = (S, T,m) be a p-mapping and DS be an
instance of S.

An instance DT of T is said to be by-table consistent with DS and pM , if there exists a mapping
m ∈ m such that DS and DT satisfy m. �

Given a source instance DS and a possible mapping m ∈ m, there can be an infinite number of
target instances that are consistent with DS and m. We denote by Tarm(DS) the set of all such
instances.

In the probabilistic context, we assign a probability to every answer. Intuitively, we consider the
certain answers with respect to each possible mapping in isolation. The probability of an answer t
is the sum of the probabilities of the mappings for which t is deemed to be a certain answer. We
define by-table answers as follows:

Definition 3.7 (By-table Answer). Let pM = (S, T,m) be a p-mapping. Let Q be a query over T
and let DS be an instance of S.

Let t be a tuple. Let m̄(t) be the subset of m, such that for each m ∈ m̄(t) and for each
DT ∈ Tarm(DS), t ∈ Q(DT ).

9
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Let p =
∑

m∈m̄(t) Pr(m). If p > 0, then we say (t, p) is a by-table answer of Q with respect to
DS and pM . �

By-tuple semantics: If we follow the possible-world notions, in by-tuple semantics, different
tuples in a source table can fall in different possible worlds; that is, different possible mappings
associated with those possible worlds can apply to the different source tuples.

Formally, the key difference in the definition of by-tuple semantics from that of by-table seman-
tics is that a consistent target instance is defined by a mapping sequence that assigns a (possibly
different) mapping in m to each tuple in DS . (Without losing generality, in order to compare
between such sequences, we assign some order to the tuples in the instance).

Definition 3.8 (By-tuple Consistent Instance). Let pM = (S, T,m) be a p-mapping and let DS be
an instance of S with d tuples.

An instance DT of T is said to be by-tuple consistent with DS and pM , if there is a sequence
〈m1, . . . ,md〉 such that for every 1 ≤ i ≤ d,

• mi ∈ m, and

• for the ith tuple of DS, ti, there exists a target tuple t′i ∈ DT such that for each attribute
correspondence (as, at) ∈ mi, the value of as in ti is the same as the value of at in t′i . �

Given a mapping sequence seq = 〈m1, . . . ,md〉, we denote by Tarseq(DS) the set of all target
instances that are consistent with DS and seq . Note that if DT is by-table consistent with DS and
m, then DT is also by-tuple consistent with DS and a mapping sequence in which each mapping is
m.

We can think of every sequence of mappings seq = 〈m1, . . . ,md〉 as a separate event whose
probability is Pr(seq) = Πd

i=1Pr(mi). (In Section 8 we relax this independence assumption and
introduce conditional mappings.) If there are l mappings in pM , then there are ld sequences of
length d, and their probabilities add up to 1. We denote by seqd(pM) the set of mapping sequences
of length d generated from pM .

Definition 3.9 (By-tuple Answer). Let pM = (S, T,m) be a p-mapping. Let Q be a query over T
and DS be an instance of S with d tuples.

Let t be a tuple. Let seq(t) be the subset of seqd(pM), such that for each seq ∈ seq(t) and for
each DT ∈ Tar seq(DS), t ∈ Q(DT ).

Let p =
∑

seq∈seq(t) Pr(seq). If p > 0, we call (t, p) a by-tuple answer of Q with respect to DS

and pM . �

The set of by-table answers for Q with respect to DS is denoted by Qtable(DS) and the set of
by-tuple answers for Q with respect to DS is denoted by Qtuple(DS).

Example 3.10. Consider the p-mapping pM , the source instance DS, and the query Q in the
motivating example.

In by-table semantics, Figure 3(b) shows a target instance that is consistent with DS (repeated
in Figure 3(a)) and possible mapping m1. Figure 3(d) shows the by-table answers of Q with respect
to DS and pM . As an example, for tuple t =(‘Sunnyvale’), we have m̄(t) = {m1,m2}, so the
possible tuple (‘Sunnyvale’, 0.9) is an answer.

In by-tuple semantics, Figure 3(c) shows a target instance that is by-tuple consistent with DS

and the mapping sequence < m2,m3 >. Figure 3(e) shows the by-tuple answers of Q with respect
to DS and pM . �
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4 Complexity of Query Answering

This section considers query answering in the presence of probabilistic mappings. We describe
algorithms for query answering and study the complexity of query answering in terms of the size
of the data (data complexity) and the size of the mapping (mapping complexity). We also consider
cases in which we are not interested in the actual probability of an answer, just whether or not a
tuple is a possible answer.

We show that when the schema is fixed, returning all by-table answers is in PTIME for both
complexity measures, whereas returning all by-tuple answers in general is #P-complete with respect
to the data complexity. Recall that #P is the complexity class of some hard counting problems
(e.g., counting the number of variable assignments that satisfy a boolean formula). It is believed
that a #P-complete problem cannot be solved in polynomial time, unless P = NP . We show that
computing the probabilities is the culprit here: even deciding the probability of a single answer
tuple under by-tuple semantics is already #P-complete, whereas computing all by-tuple answers
without returning the probabilities is in PTIME. Finally, we identify a large subclass of common
queries where returning all by-tuple answers with their probabilities is still in PTIME.

4.1 By-table Query Answering

In the case of by-table semantics, answering queries is conceptually simple. Given a p-mapping
pM = (S, T,m) and an SPJ query Q, we can compute the certain answers of Q under each of the
mappings m ∈ m. We attach the probability Pr(m) to every certain answer under m. If a tuple
is an answer to Q under multiple mappings in m, then we add up the probabilities of the different
mappings.

Algorithm ByTable takes as input an SPJ query Q that mentions the relations T1, . . . , Tl in the
FROM clause. Assume that we have the p-mapping pMi associated with the table Ti. The algorithm
proceeds as follows.

Step 1: We generate the possible reformulations of Q (a reformulation query computes all cer-
tain answers when executed on the source data) by considering every combination of the form
(m1, . . . ,ml), where mi is one of the possible mappings in pMi. Denote the set of reformulations
by Q′

1, . . . , Q
′

k. The probability of a reformulation Q′ = (m1, . . . ,ml) is Πl
i=1Pr(m

i).

Step 2: For each reformulation Q′, retrieve each of the unique answers from the sources. For each
answer obtained by Q′

1 ∪ . . . ∪Q
′

k, its probability is computed by summing the probabilities of the
Q′’s in which it is returned.

Importantly, note that it is possible to express both steps as a SQL query with grouping and
aggregation. Therefore, if the underlying sources support SQL, we can leverage their optimizations
to compute the answers.

With our restricted form of schema mapping, the algorithm takes time polynomial in the size
of the data and the mappings. We thus have the following complexity result. We give full proofs
for results in this paper in the Appendix.

Theorem 4.1. Let pM be a schema p-mapping and let Q be an SPJ query.

Answering Q with respect to pM in by-table semantics is in PTIME in the size of the data and
the mapping. �

GLAV mappings: It is rather straightforward to extend the above results to arbitrary GLAV
mappings. We define general p-mappings to be triples of the form pGM = (S̄, T̄ ,gm), where gm
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Tuple Prob

(’Sunnyvale’) 0.94
(’Mountain View’) 0.5

(’alice@’) 0.1
(’bob@’) 0.1

(a)

Tuple Prob

(’Sunnyvale’) 0.8
(’Mountain View’) 0.8

(b)

Figure 4: Example 4.3: (a) Qtuple
1 (D) and (b) Qtuple

2 (D).

is a set {(gmi, P r(gmi)) | i ∈ [1, n]}, such that for each i ∈ [1, n], gmi is a general GLAV mapping.
The definition of by-table semantics for such mappings is a simple generalization of Definition 3.7.
The following result holds for general p-mappings.

Theorem 4.2. Let pGM be a general p-mapping between a source schema S̄ and a target schema
T̄ . Let DS be an instance of S̄. Let Q be an SPJ query with only equality conditions over T̄ . The
problem of computing Qtable(DS) with respect to pGM is in PTIME in the size of the data and the
mapping. �

4.2 By-tuple Query Answering

To extend the by-table query-answering strategy to by-tuple semantics, we would need to compute
the certain answers for every mapping sequence generated by pM . However, the number of such
mapping sequences is exponential in the size of the input data. The following example shows that
for certain queries this exponential time complexity is not avoidable.

Example 4.3. Suppose that in addition to the tables in Example 2.1, we also have U(city) in the
source and V(hightech) in the target. The p-mapping for V contains two possible mappings: ({(city,
hightech)}, .8) and (∅, .2).

Consider the following query Q, which decides if there are any people living in a high-tech city.

Q: SELECT ‘true’

FROM T, V

WHERE T.mailing-addr = V.hightech

One may conjecture that we can answer the query by first executing the following two sub-queries
Q1 and Q2, then joining the answers of Q1 and Q2 and summing up the probabilities.

Q1: SELECT mailing-addr FROM T

Q2: SELECT hightech FROM V

Now consider the source instance D, where DS is shown in Figure 2(a), and DU has two tuples

(‘Mountain View’) and (‘Sunnyvale’). Figure 4(a) and (b) show Qtuple
1 (D) and Qtuple

2 (D). If we join
the results of Q1 and Q2, we obtain for the true tuple the following probability: 0.94∗0.8+0.5∗0.8 =
1.152. However, this is incorrect. By enumerating all consistent target tables, we in fact compute
0.864 as the probability. The reason for this error is that on some target instance that is by-tuple
consistent with the source instance, the answers to both Q1 and Q2 contain tuple (‘Sunnyvale’)
and tuple (‘Mountain View’). Thus, generating the tuple (‘Sunnyvale’) as an answer for both Q1

and Q2 and generating the tuple (‘Mountain View’) for both queries are not independent events, so
simply adding up their probabilities leads to incorrect results.

Indeed, we cannot answer Q by dividing it into several sub-queries and then joining the results
in some way, but have to answer the query by enumerating all by-tuple consistent target instances.
�

12
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In fact, we show that in general, answering SPJ queries in by-tuple semantics with respect to
schema p-mappings is hard.

Theorem 4.4. Let Q be an SPJ query and let pM be a schema p-mapping. The problem of finding
the probability for a by-tuple answer to Q with respect to pM is #P-complete with respect to data
complexity and is in PTIME with respect to mapping complexity. �

The lower bound in Theorem 4.4 is proved by reducing the problem of counting the number of
variable assignments that satisfy a bipartite monotone 2DNF boolean formula to the problem of
finding the answers to Q. We give the full proof of this theorem in Appendix 12.

In fact, the reason for the high complexity is exactly that we are asking for the probability
of the answer. The following theorem shows that if we only want to know the possible by-tuple
answers, we can do so in polynomial time.

Theorem 4.5. Given an SPJ query and a schema p-mapping, returning all by-tuple answers with-
out probabilities is in PTIME with respect to data complexity. �

The key to proving the PTIME complexity is that we can find all by-tuple answer tuples (without
knowing the probability) by answering the query on the mirror target of the source data. Formally,
let DS be the source data and pM be the schema p-mapping. The mirror target of DS with respect
to pM is defined as follows. If R is not involved in any mapping, the mirror target contains R
itself; if R is the target of pM = (S, T,m) ∈ pM , the mirror target contains a relation R′ where
for each source tuple tS of S and each m ∈ m, there is a tuple tT in R′ that (1) is consistent with
tS and m and contains null value for each attribute that is not involved in m, (2) contains an id
column with the value of the id column in tS (we assume the existence of identifier attribute id for
S and in practice we can use S’s key attributes in place of id), and (3) contains a mapping column
with the identifier of m. Meanwhile, we slightly modify a query Q into a mirror query Qm with
respect to pM as follows: Qm is the same as Q except that for each relation R that is the target
of a p-mapping in pM and occurs multiple times in Q’s FROM clause, and for any of R’s two aliases
R1 and R2 in the FROM clause, Q′ contains in addition the following predicates: (R1.id <> R2.id
OR R1.mapping=R2.mapping).

Lemma 4.6. Let pM be a schema p-mapping. Let Q be an SPJ query and Qm be Q’s mirror query
with respect to pM . Let DS be the source database and DT be the mirror target of DS with respect
to pM .

Then, t ∈ Qtuple(DS) if and only if t ∈ Qm(DT ) and t does not contain null value. �

The size of the mirror target is polynomial in the size of the data and the p-mapping. The
PTIME complexity bound follows from the fact that answering the mirror query on the mirror
target takes only polynomial time.

GLAV mappings: Extending by-tuple semantics to arbitrary GLAV mappings is much trickier
than by-table semantics. It would involve considering mapping sequences whose length is the
product of the number of tuples in each source table, and the results are much less intuitive.
Hence, we postpone by-tuple semantics to future work.

4.3 Two Restricted Cases

In this section we identify two restricted but common classes of queries for which by-tuple query
answering takes polynomial time. We conjecture that they are the only cases where it is possible
to answer a query in polynomial time.

13
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In our discussion we refer to subgoals of a query. The subgoals are tables that occur in the FROM
clause of a query. Hence, even if the same table occurs twice in the FROM clause, each occurrence is
a different subgoal.

Queries with a single p-mapping subgoal

The first class of queries we consider are those that include only a single subgoal being the
target of a p-mapping. Relations in the other subgoals are either involved in ordinary mappings
or do not require a mapping. Hence, if we only have uncertainty with respect to one part of the
domain, our queries will typically fall in this class. We call such queries non-p-join queries. The
query Q in the motivating example is an example non-p-join query.

Definition 4.7 (non-p-join queries). Let pM be a schema p-mapping and let Q be an SPJ query.

If at most one subgoal in the body of Q is the target of a p-mapping in pM , then we say Q is a
non-p-join query with respect to pM . �

For a non-p-join query Q, the by-tuple answers of Q can be generated from the by-table answers
of Q over a set of databases, each containing a single tuple in the source table. Specifically, let
pM = (S, T,m) be the single p-mapping whose target is a relation in Q, and let DS be an instance
of S with d tuples. Consider the set of tuple databases T(DS) = {D1, . . . ,Dd}, where for each
i ∈ [1, d], Di is an instance of S and contains only the i-th tuple in DS . The following lemma shows
that Qtuple(DS) can be derived from Qtable(D1), . . . , Q

table(Dd).

Lemma 4.8. Let pM be a schema p-mapping between S̄ and T̄ . Let Q be a non-p-join query over
T̄ and let DS be an instance of S̄. Let (t, Pr(t)) be a by-tuple answer with respect to DS and pM .
Let T̄ (t) be the subset of T(DS) such that for each D ∈ T̄ (t), t ∈ Qtable(D). The following two
conditions hold:

1. T̄ (t) 6= ∅;

2. Pr(t) = 1 − ΠD∈T̄ (t),(t,p)∈Qtable(D)(1 − p). �

In practice, answering the query for each tuple database can be expensive. We next describe
Algorithm NonPJoin, which computes the answers for all tuple databases in one step. The key of
the algorithm is to distinguish answers generated by different source tuples. To do this, we assume
there is an identifier attribute id for the source relation whose values are concatenations of values
of the key columns. We now describe the algorithm in detail.

Algorithm NonPJoin takes as input a non-p-join query Q, a schema p-mapping pM , and a
source instance DS , and proceeds in three steps to compute all by-tuple answers.

Step 1: Rewrite Q to Q′ such that it returns T .id in addition. Revise the p-mapping such that each
possible mapping contains the correspondence between S.id and T .id.

Step 2: Invoke ByTable with Q′, pM and DS . Note that each generated result tuple contains the
id column in addition to the attributes returned by Q.

Step 3: Project the answers returned in Step 2 on Q’s returned attributes. Suppose projecting
t1, . . . , tn obtains the answer tuple t, then the probability of t is 1 − Πn

i=1(1 − Pr(ti)).

Example 4.9. Consider rewriting Q in the motivating example, repeated as follows:

Q: SELECT mailing-addr FROM T
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Step 1 rewrites Q into query Q′ by adding the id column:

Q’: SELECT id, mailing-addr FROM T

In Step 2, ByTable may generate the following SQL query to compute by-table answers for
Q′:

Qa: SELECT id, mailing-addr, SUM(pr)

FROM (

SELECT DISTINCT id, current-addr AS mailing-addr, 0.5 AS pr

FROM S

UNION ALL

SELECT DISTINCT id, permanent-addr AS mailing-addr, 0.4 AS pr

FROM S

UNION ALL

SELECT DISTINCT id, email-addr AS mailing-addr, 0.1 AS pr

FROM S)

GROUP BY id, mailing-addr

Step 3 then generates the results using the following query.

Qu: SELECT mailing-addr, NOR(pr) AS pr

FROM Qa

GROUP BY mailing-addr

where for a set of probabilities pr1, . . . , prn, NOR computes 1 − Πn
i=1pri. �

An analysis of Algorithm NonPJoin leads to the following complexity result for non-p-join
queries.

Theorem 4.10. Let pM be a schema p-mapping and let Q be a non-p-join query with respect to
pM .

Answering Q with respect to pM in by-tuple semantics is in PTIME in the size of the data and
the mapping. �

Projected p-join queries

We now show that query answering can be done in polynomial time for a class of queries, called
projected p-join queries, that include multiple subgoals involved in p-mappings. In such a query,
we say that a join predicate is a p-join predicate with respect to a schema p-mapping pM , if at
least one of the involved relations is the target of a p-mapping in pM . We define projected p-join
queries as follows.

Definition 4.11 (projected p-join query). Let pM be a schema p-mapping and Q be an SPJ query
over the target of pM . If the following conditions hold, we say Q is a projected p-join query with
respect to pM :

• at least two subgoals in the body of Q are targets of p-mappings in pM .

• for every p-join predicate, the join attribute (or an equivalent attribute implied by the predi-
cates in Q) is returned in the SELECT clause. �
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Example 4.12. Consider the schema p-mapping in Example 4.3. A slight revision of Q, shown as
follows, is a non-p-join query.

Q’: SELECT V.hightech

FROM T, V

WHERE T.mailing-addr = V.hightech

�

Note that in practice, when joining data from multiple tables in a data integration scenario, we
typically project the join attributes, thereby leading to projected p-join queries.

The key to answering a projected-p-join query Q is to divide Q into multiple subqueries, each of
which is a non-p-join query, and compute the answer to Q from the answers to the subqueries. We
proceed by considering partitions of the subgoals in Q. We say that a partitioning J̄ is a refinement
of a partitioning J̄ ′, denoted J̄ � J̄ ′, if for each partition J ∈ J̄ , there is a partition J ′ ∈ J̄ ′, such
that J ⊆ J ′. We consider the following partitioning of Q, the generation of which will be described
in detail in the algorithm.

Definition 4.13 (Maximal P-Join Partitioning). Let pM be a schema p-mapping. Let Q be an
SPJ query and J̄ be a partitioning of the subgoals in Q.

We say that J̄ is a p-join partitioning of Q, if (1) each partition J ∈ J̄ contains at most one
subgoal that is the target of a p-mapping in pM , and (2) if neither subgoal in a join predicate is
involved in p-mappings in pM , the two subgoals belong to the same partition.

We say that J̄ is a maximal p-join partitioning of Q, if there does not exist a p-join partitioning
J̄ ′, such that J̄ � J̄ ′. �

For each partition J ∈ J̄ , we can define a query QJ as follows. The FROM clause includes the
subgoals in J . The SELECT clause includes J ’s attributes that occur in (1) Q’s SELECT clause or
(2) Q’s join predicates that join subgoals in J with subgoals in other partitions. The WHERE clause
includes Q’s predicates that contain only subgoals in J . When J is a partition in a maximal p-join
partitioning of Q, we say that QJ is a p-join component of Q.

The following is the main lemma underlying our algorithm. It shows that we can compute the
answers of Q from the answers to its p-join components.

Lemma 4.14. Let pM be a schema p-mapping. Let Q be a projected p-join query with respect to
pM and let J̄ be a maximal p-join partitioning of Q. Let QJ1, . . . , QJn be the p-join components of
Q with respect to J̄ .

For any instance DS of the source schema of pM and result tuple t ∈ Qtuple(DS), the following
two conditions hold:

1. For each i ∈ [1, n], there exists a single tuple ti ∈ Qtuple
Ji (DS), such that t1, . . . , tn generate t

when joined together.

2. Let t1, . . . , tn be the above tuples. Then Pr(t) = Πn
i=1Pr(ti). �

Lemma 4.14 leads naturally to the query-rewriting algorithm ProjectedPJoin, which takes
as input a projected-p-join query Q, a schema p-mapping pM , and a source instance DS , outputs
all by-tuple answers, and proceeds in three steps.

Step 1: Generate maximum p-join partitions J1, . . . , Jn as follows. First, initialize each partition
to contain one subgoal in Q. Then, for each join predicate with subgoals S1 and S2 that are not
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involved in p-mappings in pM , merge the partitions that S1 and S2 belong to. Finally, for each
partition that contains no subgoal involved in pM , merge it with another partition.

Step 2: For each p-join partition Ji, i ∈ [1, n], generate the p-join component QJi and invoke
Algorithm NonPJoin with QJi, pM and DS to compute answers for QJi.

Step 3: Join the results of QJ1, . . . , QJn. If an answer tuple t is obtained by joining t1, . . . , tn, then
the probability of t is computed by Πn

i=1Pr(ti).

We illustrate the algorithm using the following example.

Example 4.15. Consider query Q′ in Example 4.12. Its two p-join components are Q1 and Q2

shown in Example 4.3. Suppose we compute Q1 with query Qu (shown in Example 4.9) and compute
Q2 with query Q′

u. We can compute by-tuple answers of Q′ as follows:

SELECT Qu’.hightech, Qu.pr*Qu’.pr

FROM Qu, Qu’

WHERE Qu.mailing-addr = Qu’.hightect

�

Since the number of p-join components is bounded by the number of subgoals in a query, and
for each of them we invoke Algorithm NonPJoin, query answering for projected p-join queries
takes polynomial time.

Theorem 4.16. Let pM be a schema p-mapping and let Q be a projected-p-join query with respect
to pM .

Answering Q with respect to pM in by-tuple semantics is in PTIME in the size of the data and
the mapping. �

Other SPJ queries

A natural question is whether the two classes of queries we have identified are the only ones
for which query answering is in PTIME for by-tuple semantics. As Example 4.3 shows, if Q
contains multiple subgoals that are involved in a schema p-mapping, but Q is not a projected-p-
join query, then Condition 1 in Lemma 4.14 does not hold and query answering needs to proceed
by enumerating all mapping sequences.

We believe that the complexity of the border case, where a query joins two relations involved
in p-mappings but does not return the join attribute, is #P-hard, but currently it remains an open
problem.

5 Top-K Query Answering

In this section, we consider returning the top-k query answers, which are the k answer tuples
with the top probabilities. The main challenge in designing the algorithm is to only perform
the necessary reformulations at every step and halt when the top-k answers are found. We first
describe our algorithm for by-table semantics. We then show the challenges for by-tuple semantics
and outline our solution.
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5.1 Returning Top-K By-table Answers

Recall that in by-table query answering, the probability of an answer is the sum of the probabil-
ities of the reformulated queries that generate the answer. Our goal is to reduce the number of
reformulated queries we execute. Our algorithm proceeds in a greedy fashion: we execute queries
in descending order of probabilities. For each tuple t, we maintain the upper bound pmax(t) and
lower bound pmin(t) of its probability. This process halts when we find k tuples whose pmin values
are higher than pmax of the rest of the tuples.

TopKByTable takes as input an SPJ query Q, a schema p-mapping pM , an instance DS of
the source schema, and an integer k, and outputs the top-k answers in Qtable(DS). The algorithm
proceeds in three steps.

Step 1: Rewrite Q according to pM into a set of queries Q1, . . . , Qn, each with a probability
assigned in a similar way as stated in Algorithm ByTable.

Step 2: Execute Q1, . . . , Qn in descending order of their probabilities. Maintain the following
measures:

• The highest probability, PMax, for the tuples that have not been generated yet. We initialize
PMax to 1; after executing query Qi and updating the list of answers (see third bullet), we
decrease PMax by Pr(Qi);

• The threshold th determining which answers are potentially in the top-k. We initialize th
to 0; after executing Qi and updating the answer list, we set th to the k-th largest pmin for
tuples in the answer list;

• A list L of answers whose pmax is no less than th, and bounds pmin and pmax for each answer in
L. After executing query Qi, we update the list as follows: (1) for each t ∈ L and t ∈ Qi(DS),
we increase pmin(t) by Pr(Qi); (2) for each t ∈ L but t 6∈ Qi(DS), we decrease pmax(t) by
Pr(Qi); (3) if PMax ≥ th, for each t 6∈ L but t ∈ Qi(DS), insert t to L, set pmin to Pr(Qi)
and pmax(t) to PMax.

• A list T of k tuples with top pmin values.

Step 3: When th > PMax and for each t 6∈ T , th > pmax(t), halt and return T .

Example 5.1. Consider Example 2.1 where we seek for top-1 answer. We answer the reformulated
queries in order of Q1, Q2, Q3. After answering Q1, for tuple (“Sunnyvale”) we have pmin = .5 and
pmax = 1, and for tuple (“Mountain View”) we have the same bounds. In addition, PMax = .5
and th = .5.

In the second round, we answer Q2. Then, for tuple (“Sunnyvale”) we have pmin = .9 and
pmax = 1, and for tuple (“Mountain View”) we have pmin = .5 and pmax = .6. Now PMax = .1
and th = .9.

Because th > PMax and th is above the pmax for the (“Mountain View”) tuple, we can halt
and return (“Sunnyvale”) as the top-1 answer. �

The next theorem states the correctness of ByTableTopK.

Theorem 5.2. For any schema mapping pM , SPJ query Q, instance DS of the source schema of
pM , and integer k, Algorithm ByTableTopK correctly computes the top-k answers in Qtable(DS).
�

Our algorithm differs from previous top-k algorithms in the literature in two aspects. First, we
execute the reformulated queries only when necessary, so we can return the top-k answers without
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executing all reformulated queries thereby leading to significant performance improvements. Fagin
et al. [9] have proposed several algorithms for finding instances with top-k scores, where each
instance has m attributes and the score of the instance is an aggregation over values of these
m attributes. However, these algorithms assume for each attribute there exists a sorted list on
its values, and they access the lists in parallel. In our context, this would require executing all
reformulated queries upfront. Li et al. [19] have studied computing top-k answers for aggregation
and group-by queries and optimizing query answering by generating the groups incrementally.
Although we can also compute by-table answers using an aggregation query, this query is different
from those considered in [19] in that the WHERE clause contains a set of sub-queries rather than
database tables. Therefore, applying [19] here also requires evaluating all reformulated queries at
the beginning.

Second, whereas maintaining upper bounds and lower bounds for instances has been explored in
the literature, such as in Fagin’s NRA (Non-Random Access) algorithm and in [19], our algorithm
is different in that it keeps these bounds only for tuples that have already been generated by an
executed reformulated query and that are potential top-k answers (by judging if the upper bound
is above the threshold th). In addition, we are different from [19] in that we do not assume the
threshold th is known beforehand.

5.2 By-tuple Top-K Query Answering

We next consider returning top-k answers in by-tuple semantics. In general, we need to consider
each mapping consequence and answer the query on the target instance that is consistent with the
source and the mapping sequence. Algorithm TopKByTable can be modified to compute top-k
by-tuple answers by deciding at runtime the mapping sequence to consider next. However, for
non-p-join queries and projected-p-join queries, we can return top-k answers more efficiently. We
outline our method for answering non-p-join queries here, and for space considerations, we leave
projected-p-join queries to the full paper.

For non-p-join queries the probability of an answer tuple t to query Q cannot be expressed
as a function of t’s probabilities in executing reformulations of Q; rather, it is a function of t’s
probabilities in answering Q on each tuple database of the source table. However, retrieving
answers on a tuple base is expensive. Algorithm NonPJoin provides a method that computes
by-tuple answers on the tuple databases in a batch mode by first rewriting Q into Q′ by returning
the id column and then executing Q′’s reformulated queries. We find top-k answers in a similar
fashion. Here, after executing each reformulated query, we need to maintain two answer lists, one
for Q and one for Q′, and compute pmin and pmax for answers in different lists differently.

6 Representation of Probabilistic Mappings

Thus far, a p-mapping was represented by listing each of its possible mappings, and the complexity
of query answering was polynomial in the size of that representation. Such a representation can be
quite lengthy since it essentially enumerates a probability distribution by listing every combination
of events in the probability space. Hence, an interesting question is whether there are more concise
representations of p-mappings and whether our algorithms can leverage them.

We consider three representations that can reduce the size of the p-mapping exponentially. In
Section 6.1 we consider a representation in which the attributes of the source and target tables
are partitioned into groups and p-mappings are specified for each group separately. We show that
query answering can be done in time polynomial in the size of the representation. In Section 6.2 we
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Mapping Prob

{(a,a’), (b,b’), (c,c’)} 0.72
{(a,b’), (c,c’)} 0.18
{(a,a’), (b,b’)} 0.08

{(a,b’)} 0.02

(a)

Mapping Prob

{(a,a’), (b,b’)} 0.8
{(a,b’)} 0.2

(b)

Mapping Prob

{(c,c’)} 0.9
∅ 0.1

(c)

Figure 5: Example 6.2: the p-mapping in (a) is equivalent to the 2-group p-mapping in (b) and
(c).

consider probabilistic correspondences, where we specify the marginal probability of each attribute
correspondence. However, we show that such a representation can only be leveraged in limited cases.
Finally, we consider Bayes Nets, the most common method for concisely representing probability
distributions, in Section 6.3, and show that even though some p-mappings can be represented by
them, query answering does not necessarily benefit from the representation.

6.1 Group Probabilistic Mapping

In practice, the uncertainty we have about a p-mapping can often be represented as a few localized
choices, especially when schema mappings are created by semi-automatic methods. To represent
such p-mappings more concisely, we can partition the source and target attributes and specify
p-mappings for each partition.

Definition 6.1 (Group P-Mapping). An n-group p-mapping gpM is a triple (S, T, pM ), where

• S is a source relation schema and S1, . . . , Sn is a set of disjoint subsets of attributes in S;

• T is a target relation schema and T1, . . . , Tn is a set of disjoint subsets of attributes in T ;

• pM is a set of p-mappings {pM1, . . . , pMn}, where for each 1 ≤ i ≤ n, pMi is a p-mapping
between Si and Ti. �

The semantics of an n-group p-mapping gpM = (S, T, pM) is a p-mapping that includes the
Cartesian product of the mappings in each of the pMi’s. The probability of the mapping composed
of m1 ∈ pM1, . . . ,mn ∈ pMn is Πn

i=1Pr(mi).

Example 6.2. Figure 5(a) shows p-mapping pM between the schemas S(a, b, c) and T (a′, b′, c′).
Figure 5(b) and (c) show two independent mappings that together form a 2-group p-mapping equiv-
alent to pM . �

Note that a group p-mapping can be considerably more compact than an equivalent p-mapping.
Specifically, if each pMi includes li mappings, then a group p-mapping can describe Πn

i=1li possible
mappings with

∑n
i=1 li sub-mappings. The important feature of n-group p-mappings is that query

answering can be done in time polynomial in their size.

Theorem 6.3. Let gpM be a schema group p-mapping and let Q be an SPJ query. The mapping
complexity of answering Q with respect to gpM in both by-table semantics and by-tuple semantics
is in PTIME. �

Note that as n grows, fewer p-mappings can be represented with n-group p-mappings. Formally,
suppose we denote by Mn

ST the set of all n-group p-mappings between S and T , then:
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Proposition 6.4. For each n ≥ 1, Mn+1
ST ⊂ Mn

ST . �

We typically expect that when possible, a mapping would be given as a group p-mapping. The
following theorem shows that we can find the best group p-mapping for a given p-mapping in
polynomial time.

Theorem 6.5. Given a p-mapping pM , we can find in polynomial time in the size of pM the
maximal n and an n-group p-mapping gpM , such that gpM is equivalent to pM . �

6.2 Probabilistic Correspondences

The second representation we consider, probabilistic correspondences, represents a p-mapping with
the marginal probabilities of attribute correspondences. This representation is the most compact
one as its size is proportional to the product of the schema sizes of S and T .

Definition 6.6 (Probabilistic Correspondences). A probabilistic correspondence mapping (p-correspondence)
is a triple pC = (S, T, c), where S = 〈s1, . . . , sm〉 is a source relation schema, T = 〈t1, . . . , tn〉 is a
target relation schema, and

• c is a set {(cij ,Pr(cij))|i ∈ [1,m], j ∈ [1, n]}, where cij = (si, tj) is an attribute correspon-
dence, and Pr(cij) ∈ [0, 1];

• for each i ∈ [1,m],
∑n

j=1 Pr(cij) ≤ 1;

• for each j ∈ [1, n],
∑m

i=1 Pr(cij) ≤ 1. �

Note that for a source attribute si, we allow
∑n

j=1 Pr(cij) < 1. This is because in some of the
possible mappings, si may not be mapped to any target attribute. The same is true for target
attributes.

From each p-mapping, we can infer a p-correspondence by calculating the marginal probabilities
of each attribute correspondence. Specifically, for a p-mapping pM = (S, T,m), we denote by
pC(pM) the p-correspondence where each marginal probability is computed as follows:

Pr(cij) =
∑

cij∈m,m∈m

Pr(m)

However, as the following example shows, the relationship between p-mappings and p-correspondences
is many-to-one.

Example 6.7. The p-correspondence in Figure 6(b) is the one computed for both the p-mapping
in Figure 6(a) and the p-mapping in Figure 5(a). �

Given the many-to-one relationship, the question is when it is possible to compute the correct
answer to a query based only on the p-correspondence. That is, we are looking for a class of queries
Q̄, called p-mapping independent queries, such that for every Q ∈ Q̄ and every database instance
DS , if pC(pM1) = pC(pM2), then the answer of Q with respect to pM1 and DS is the same as the
answer of Q with respect to pM2 and DS . Unfortunately, this property holds for a very restricted
class of queries, defined as follows:

Definition 6.8 (Single-Attribute Query). Let pC = (S, T, c) be a p-correspondence. An SPJ query
Q is said to be a single-attribute query with respect to pC if T has one single attribute occurring
in the SELECT and WHERE clauses of Q. This attribute of T is said to be a critical attribute. �
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Mapping Prob

{(a,a’), (b,b’), (c,c’)} 0.8
{(a,b’), (c,c’)} 0.1

{(a,b’)} 0.1

(a)

Corr Prob

{(a,a’)} 0.8
{(a,b’)} 0.2
{(b,b’)} 0.8
{(c,c’)} 0.9

(b)

Figure 6: Example 6.7: the p-mapping in (a) corresponds to the p-correspondence in (b).

Theorem 6.9. Let pC be a schema p-correspondence, and Q be an SPJ query. Then, Q is p-
mapping independent with respect to pC if and only if for each pC ⊆ pC, Q is a single-attribute
query with respect to pC. �

Example 6.10. Continuing with Example 6.7, consider the p-correspondence pC in Figure 6(b)
and the following two queries Q1 and Q2. Query Q1 is mapping independent with respect to pC,
but Q2 is not.

Q1: SELECT T.a FROM T,U WHERE T.a=U.a’

Q2: SELECT T.a, T.c FROM T

�

Theorem 6.9 simplifies query answering for p-mapping independent queries. Wherever we
needed to consider every possible mapping in previous algorithms, we consider only every attribute
correspondence for the critical attribute.

Corollary 6.11. Let pC be a schema p-correspondence, and Q be a p-mapping independent SPJ
query with respect to pC. The mapping complexity of answering Q with respect to pC in both
by-table semantics and by-tuple semantics is in PTIME. �

The result in Theorem 6.9 can be generalized to cases where we know the p-mapping is an n-
group p-mapping. Specifically, as long as Q includes at most a single attribute in each of the groups
in the n-group p-mapping, query answering can still be done with the correspondence mapping.
We omit the details of this generalization.

6.3 Bayes Nets

Bayes Nets are a powerful mechanism for concisely representing probability distributions and rea-
soning about probabilistic events [21]. The following example shows how Bayes Nets can be used
in our context.

Example 6.12. Consider two schemas S = (s1, . . . , sn, s
′

1, . . . , s
′
n) and T = (t1, . . . , tn). Consider

the p-mapping pM = (S, T,m), which describes the following probability distribution: if s1 maps to
t1 then it is more likely that {s2, . . . , sn} maps to {t2, . . . , tn}, whereas if s′1 maps to t1 then it is
more likely that {s′2, . . . , s

′

n} maps to {t2, . . . , tn}.

We can represent the p-mapping using a Bayes Net as follows. Let c be an integer constant.
Then,

1. Pr((s1, t1)) = Pr((s′1, t1)) = 1/2;

2. for each i ∈ [1, n], Pr((si, ti)|(s1, t1)) = 1 − 1
c

and Pr((s′i, ti)|(s1, t1)) = 1
c
;
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3. for each i ∈ [1, n], Pr((si, ti)|(s
′

1, t1)) = 1
c

and Pr((s′i, ti)|(s
′

1, t1)) = 1 − 1
c
.

Since the p-mapping contains 2n possible mappings, the original representation would take space
O(2n); however, the Bayes-Net representation takes only space O(n). �

Although the Bayes-Net representation can reduce the size exponentially for some p-mappings,
this conciseness may not help reduce the complexity of query answering. We formalize this result
in the following theorem.

Theorem 6.13. There exists a schema p-mapping pM and a query Q, such that answering Q
with respect to pM in by-table semantics takes exponential time in the size of pM ’s Bayes-Net
representation. �

7 Probabilistic Data Exchange

In this section we consider another method for using probabilistic schema mappings, and establish
a close relationship between probabilistic mappings and probabilistic databases. We consider the
scenario of data exchange, where data is shared by using the mappings to create an instance of the
target schema called the core universal solution [8]. In our context, we show that we can create a
probabilistic database that serves as the core universal solution.

Probabilistic databases: We begin by briefly reviewing probabilistic databases (the reader is
referred to [24] for further details).

A probabilistic database (p-database) pD over a schema R̄ is a set {(D1, P r(D1)), . . . , (Dn, P r(Dn))},
such that

• for i ∈ [1, n], Di is an instance of R̄, and for every i, j ∈ [1, n], i 6= j ⇒ Di 6= Dj ;

• Pr(Di) ∈ [0, 1] and
∑n

i=1 Pr(Di) = 1.

Answers to queries over p-databases have probabilities associated with them. Specifically, let
Q be a query over pD, and let t be a tuple. We denote by D̄(t) the subset of pD such that for each
D ∈ D̄(t), t ∈ Q(D). Let p =

∑
D∈D(t) Pr(D). If p > 0, we call (t, p) a possible tuple in the answer

of Q on pD.

Given a query Q and a p-database pD, we denote by Q(pD) the set of all possible tuples in the
answer of Q on pD. We next show that data-exchange solutions can be represented as p-databases.

Data-exchange solutions: Informally, the data-exchange problem for a p-mapping pM = (S, T,m)
and an instance DS of S is to find an instance of T that is consistent with DS and pM . We distin-
guish between by-table solutions and by-tuple solutions.

Definition 7.1 (By-table Solution). Let pM = (S, T,m) be a p-mapping and DS be an instance
of S.

A p-database pDT = {(D1, P r(D1)), . . . , (Dn, P r(Dn))} is a by-table solution for DS under
pM , if for each i ∈ [1, n], there exists a subset mi ⊆ m, such that

• for each m ∈ mi, Di is by-table consistent with DS and m;

• Pr(Di) =
∑

m∈mi
Pr(m);

• m̄1, . . . , m̄n form a partition of m. �
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The intuition underlying the definition is that one target table Di may be consistent with a
source table and a set of possible mappings m̄i, so the probability ofDi is the sum of the probabilities
of the mappings in m̄i. In the definition for by-tuple semantics, the same intuition applies, except
that we need to consider subsets of sequences.

Definition 7.2 (By-tuple Solution). Let pM = (S, T,m) be a p-mapping and DS be an instance
of S with d tuples.

A p-database pDT = {(D1, P r(D1)), . . . , (Dn, P r(Dn))} is a by-tuple solution for DS under pM
if for each i ∈ [1, n], there exists a subset seq i ⊆ seqd(pM), such that

• for each seq ∈ seq i, Di is by-tuple consistent with DS and seq;

• Pr(Di) =
∑

seq∈seqi
Pr(seq);

• seq1, . . . , seqn form a partition of seqd(pM). �

Core universal solution: Among all solutions, we would like to identify the core universal
solution, because it is unique up to isomorphism and because we can use it to find all the answers
to a query. We define the core universal solution for p-databases, but first we define homomorphisms
on such databases.

Definition 7.3 (Homomorphism of P-Databases). Let pD = {(Di, P r(Di)) | i ∈ [1, n]} and pD′ =
{(D′

i, P r(D
′

i))
| i ∈ [1,m]} be two p-databases of the same schema. Let P(pD′) be the powerset of the databases
in pD′.

A homomorphism h : pD → pD′ is a mapping from pD to P(pD′), such that

• for every D ∈ pD and D′ ∈ h(D), there exists a homomorphism g : D → D′;

• for every D ∈ pD, Pr(D) =
∑

D′∈h(D) Pr(D
′);

• h(D1), . . . , h(Dn) form a partition of pD′. �

Note that in the above definition, a homomorphism can map a database in pD to a set of
databases in pD′. We can now define core universal solutions.

Definition 7.4 (Core Universal Solution). Let pM = (S, T,m) be a p-mapping and DS be an
instance of S.

A p-database instance pDT of T is called a by-table (resp. by-tuple) universal solution for DS

under pM , if (1) pDT is a by-table (resp. by-tuple) solution for DS, and (2) for every by-table
(resp. by-tuple) solution pD′

T for DS, there exists a homomorphism h : pDT → pD′

T .

Further, pDT is called a by-table (resp. by-tuple) core universal solution for DS if for each
possible database DT ∈ pDT , there is no homomorphism from DT to a proper subset of tuples in
DT . �

The following theorem establishes the key properties of core universal solutions in our context.

Theorem 7.5. Let pM = (S, T,m) be a p-mapping and DS be an instance of S.

1. There is a unique by-table (resp. by-tuple) core universal solution up to isomorphism for DS

with respect to pM .

2. Let Q be a conjunctive query over T . Let pDT be the by-table (resp. by-tuple) core universal
solution for DS under pM . Then,

Qtable(DS) = Q(pDT ) (resp.Qtuple(DS) = Q(pDT )). �
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Complexity of data exchange: The complexity of computing the core universal solution is
established by the following theorem:

Theorem 7.6. Let pM = (S, T,m) be a p-mapping and DS be an instance of S.

Generating the by-table or by-tuple core universal solution for DS under pM takes linear time
in the size of the data and the mapping. �

For by-table semantics the proof is rather straightforward. For by-tuple semantics the proof
requires a special representation of p-databases, called disjunctive p-database.

Definition 7.7 (Disjunctive P-Database). Let R be a relation schema where there exists a set of
attributes that together form the key of the relation. Let pD∨

R be a set of tuples of R, each attached
with a probability.

We say that pD∨

R is a disjunctive p-database if for each key value that occurs in pD∨

R, the
probabilities of the tuples with this key value sum up to 1. �

In a disjunctive p-database, we consider tuples with the same key value as disjoint and those
with different key values as independent. Formally, let key1, . . . , keyn be the set of all distinct key
values in pD∨

R. For each i ∈ [1, n], we denote by di the number of tuples whose key value is key i.
Then, with a set of Σn

i=1di tuples, pD∨

R can define a set of Πn
i=1di possible databases, where each

possible database (D,Pr(D)) contains n tuples t1, . . . , tn, such that (1) for each i ∈ [1, n], the key
value of ti is key i; and (2) Pr(D) = Πn

i=1Pr(ti).

Theorem 7.6 is based on the following lemma.

Lemma 7.8. Let pM = (S, T,m) be a p-mapping and DS be an instance of S.

The by-tuple core universal solution for DS under pM can be represented as a disjunctive p-
database. �

The complexity of answering queries over the core universal solutions is the same as that of
the corresponding results for probabilistic databases. Specifically, the following theorem follows
from [23].

Theorem 7.9. Let Q be a conjunctive query.

• Let pD be a p-database instance. Computing Q(pD) is in PTIME in the size of the data.

• Let pD∨ be a disjunctive p-database instance. Computing Q(pD∨) is #P-complete in the size
of the data. �

Finally, we note that when the p-mapping is a group p-mapping, we can compute the core
universal solution in time that is linear in the size of the data and of the p-mapping.

8 Broader Classes of Mappings

In this section we briefly show how our results can be extended to capture two common practical
extensions to our mapping language.

Complex mappings: Complex mappings map a set of attributes in the source to a set of attributes
in the target. For example, we can map the attribute address to the concatenation of street, city,
and state.
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Formally, a set correspondence between S and T is a relationship between a subset of attributes
in S and a subset of attributes in T . Here, the function associated with the relationship specifies a
single value for each of the target attributes given a value for each of the source attributes. Again,
the actual functions are irrelevant to our discussion. A complex mapping is a triple (S, T, cm),
where cm is a set of set correspondences, such that each attribute in S or T is involved in at most
one set correspondence. A probabilistic complex mapping is of the form pCM = {(cmi, P r(cmi)) |
i ∈ [1, n]}, where

∑n
i=1 Pr(cmi) = 1.

Theorem 8.1. Let pCM be a schema probabilistic complex mapping between schemas S̄ and T̄ .
Let DS be an instance of S̄. Let Q be an SPJ query over T̄ . The data complexity and mapping
complexity of computing Qtable(DS) with respect to pCM are PTIME. The data complexity of
computing Qtuple(DS) with respect to pCM is #P-complete. The mapping complexity of computing
Qtuple(DS) with respect to pCM is in PTIME. �

Conditional mappings: In practice, our uncertainty is often conditioned. For example, we may
want to state that daytime-phone maps to work-phone with probability 60% if age ≤ 65, and maps
to home-phone with probability 90% if age > 65.

We define a conditional p-mapping as a set cpM = {(pM1, C1), . . . , (pMn, Cn)}, where pM1, . . . , pMn

are p-mappings, and C1, . . . , Cn are pairwise disjoint conditions. Intuitively, for each i ∈ [1, n], pMi

describes the probability distribution of possible mappings when condition Ci holds. Conditional
mappings make more sense for by-tuple semantics. The following theorem shows that our results
carry over to such mappings.

Theorem 8.2. Let cpM be a schema conditional p-mapping between S̄ and T̄ . Let DS be an
instance of S̄. Let Q be an SPJ query over T̄ . The problem of computing Qtuple(DS) with respect
to cpM is in PTIME in the size of the mapping and #P-complete in the size of the data. �

9 Related Work

We are not aware of any previous work studying the semantics and properties of probabilistic
schema mappings. Gal [11] used the top-K schema mappings obtained by a semi-automatic mapper
to improve the precision of the top mapping, but did not address any of the issues we consider.
Florescu et al. [10] were the first to advocate the use of probabilities in data integration. Their work
used probabilities to model (1) a mediated schema with overlapping classes (e.g., DatabasePapers
and AIPapers), (2) source descriptions stating the probability of a tuple being present in a source,
and (3) overlap between data sources. While these are important aspects of many domains and
should be incorporated into a data integration system, our focus here is different. De Rougement
and Vieilleribiere [6] considered approximate data exchange in that they relaxed the constraints on
the target schema, which is a different approach from ours.

There has been a flurry of activity around probabilistic and uncertain databases lately [4, 24,
5, 3]. Our intention is that a data integration system will be based on a probabilistic data model,
and we leverage concepts from that work as much as possible. We also believe that uncertainty
and lineage are closely related, in the spirit of [4], and that relationship will play a key role in data
integration. We leave exploring this topic to future work.

10 Discussion

We now discuss several extensions to our study of probabilistic schema mapping.
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Top-k query answering: Answering queries in the presence of probabilistic schema mappings
in by-tuple semantics is #-P complete, and so is quite expensive. In practice, users often want to
see only the answers with the top-k probabilities and are satisfied even if the probabilities of these
tuples are not returned. Rather than first computing all answers and then returning the top-k
answer tuples, we can improve the efficiency by performing only the necessary query reformulations
and executions at every step and halt when the top-k answers are found.

Generating probabilities: To employ probabilistic mappings in resolving heterogeneity at the
schema level, we must have a good method of generating probabilities for the mappings. This is
possible as techniques for semi-automatic schema mapping are often based on Machine Learning
techniques that at their core compute the confidence of correspondences they generate. However,
such confidence is meant more as a ranking mechanism than true probabilities between candidates
and is associated with attribute correspondences rather than candidate mappings. We plan to study
how to generate from them probabilities for candidate mappings by pursuing maximum entropy.

Reasoning uncertainties: Another direction we would like to explore is to reason about the
uncertainty on schema mappings between data sources and its effect on query answering. By
analyzing the probabilities of the candidate mappings, we would like to find the critical parts
(i.e., attribute correspondences) where it is most beneficial to expand more resources (human or
otherwise) to improve schema mapping.

Probabilistic data integration: One of our future goals is to build a data integration system
that supports uncertainty about mappings, data extracted from sources, and the exact meaning
of keyword queries. Studying the theoretical underpinning of probabilistic mappings is the first
step towards building such a system. In addition, we need to extend the current work in the
community on probabilistic databases [24] to study how to efficiently answer queries in the presence
of uncertainties in schemas and in data, and study how to translate a keyword query into structured
queries by exploiting evidence obtained from the existing data and users’ search and querying
patterns.

11 Summary

In this paper we introduced probabilistic schema mappings, with which we are able to answer
queries on heterogeneous data sources even if we have only a set of candidate mappings that may
not be precise. We presented query answering algorithms for by-table and by-tuple semantics and
studied the complexity of query answering. We also considered concise encoding of probabilistic
mappings, with which we are able to improve the efficiency of query answering. Finally, we extended
our definition to more powerful schema mapping languages and showed the extensibility of our
approach.
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12 Appendix A. Proof for Theorem 4.4

Theorem 4.4. Let Q be an SPJ query and let pM be a schema p-mapping.

The problem of finding the probability for a by-tuple answer to Q with respect to pM is #P-
complete with respect to data complexity and is in PTIME with respect to mapping complexity.
�

Proof. We prove the theorem by proving three lemmas, stating that (1) the problem is in PTIME
in the size of the mapping; (2) the problem is in #P in the size of the data; (3) the problem is
#P-hard in the size of the data.

Lemma 12.1. Let Q be an SPJ query and let pM be a schema p-mapping.

The problem of finding the probability for a by-tuple answer to Q with respect to pM is in
PTIME in the size of the mapping. �

Proof. We can generate all answers in three steps. Let T1, . . . , Tl be the relations mentioned in Q’s
FROM clause. Let pMi be the p-mapping associated with table Ti. Let di be the number of tuples
in the source table of pMi.

1. For each seq1 ∈ seqd1(pM1), . . . , seq
l ∈ seqdl(pMl), generate a target instance that is con-

sistent with the source instance and pM as follows. For each i ∈ [1, l], the target relation
Ti contains di tuples, where the j-th tuple (1) is consistent with the j-th source tuple and
the j-th mapping mj in seqi, and (2) contains null as the value of each attribute that is not
involved in mj .

2. For each target instance, answer Q on the instance. Consider only the answer tuples that do
not contain the null value and assign probability Πl

i=1Pr(seq
i) to the tuple.

3. For each distinct answer tuple, sum up its probabilities.

According to the definition of by-tuple answers, the algorithm generates all by-tuple answers.
We now prove it takes polynomial time in the size of the mapping. Assume each p-mapping pMi

contains li mappings. Then, the number of instances generated in step 1 is Πl
i=1l

di

i , polynomial in
the size of pM . In addition, the size of each generated target instance is linear in the size of the
source instance. So the algorithm takes polynomial time in the size of the mapping.

Lemma 12.2. Let Q be an SPJ query and let pM be a schema p-mapping.

The problem of finding the probability for a by-tuple answer to Q with respect to pM is in #P
in the size of the data. �

Proof. We prove the claim by reducing the problem to answering queries on disjunctive probabilistic
databases, which is proved to be in #P [23]. Before we describe the reduction, we first introduce
probabilistic databases.
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Definition 12.3 (Probabilistic Database). A probabilistic database (p-database) pD over a schema
R̄ is a set {(D1, P r(D1)), . . . , (Dn, P r(Dn))}, such that

• for i ∈ [1, n], Di is an instance of R̄, and for i 6= j,Di 6= Dj ;

• Pr(Di) ∈ [0, 1] and
∑n

i=1 Pr(Di) = 1. �

Answers to queries over p-databases have probabilities associated with them. Specifically, let
Q be a query over pD, and let t be a tuple. We denote by D̄(t) the subset of pD such that for each
D ∈ D̄(t), t ∈ Q(D). Let p =

∑
D∈D(t) Pr(D). If p > 0, we call (t, p) a possible tuple in the answer

of Q on pD.

Given a SPJ query Q and a p-database pD, we denote by Q(pD) the set of all possible tuples
in the answer of Q on pD. Computing Q(pD) takes polynomial time in the size of pD.

We next define a compact representation of p-databases, called disjunctive p-database, over
which query answering is #P-complete in the size of the representation.

Definition 12.4 (Disjunctive P-Database). Let R be a relation schema where there exists a set of
attributes that together form the key of the relation. Let pD∨

R be a set of tuples of R, each has a
probability.

We say that pD∨

R is a disjunctive p-database if for each key value that occurs in pD∨

R, the
probabilities of the tuples with this key value sum up to 1. �

In a disjunctive p-database, we consider tuples with the same key value as disjoint. Formally,
let key1, . . . , keyn be the set of all distinct key values in pD∨

R. For each i ∈ [1, n], we denote by di

the number of tuples whose key value is keyi. Then, pD∨

R defines a set of Πn
i=1di possible databases.

Each possible database (D,Pr(D)) contains n tuples t1, . . . , tn, such that (1) for each i ∈ [1, n],
the key value of ti is key i; and (2) Pr(D) = Πn

i=1Pr(ti).

We now describe the reduction. We reduce the problem of query answering with respect to
probabilistic mappings to the problem of query answering on disjunctive p-databases. The reduction
proceeds as follows.

For each relation T that occurs in Q and is involved in a p-mapping pM = (S, T,m), generate
the target instance as follows. The target instance is a disjunctive p-database with attributes in
T and a key column that is the key of the relation. For the i-th tuple ts in S and each m ∈ m,
generate a target tuple tt, such that (1) for each attribute correspondence (as, at) ∈ m, the value
of at is the same as the value of as in ts; (2) for each attribute at in T that is not involved in any
attribute correspondence in m, the value of at is null; and (3) the value of the key attribute is i.
The probability of the tuple is Pr(m). Let n be the number of tuples in T and l be the number of
mappings in pM . Generating the target instance takes time O(l · n), polynomial in the size of the
data and the mapping.

Let DS be a source instance and pDT be the generated target instance. We now prove
Qtuple(DS) = Q(pD∨

T ), where we assume Q(pDT ) does not return answers containing null val-
ues. We prove by showing that for each possible database DT of pD∨

T , there exists a mapping
sequence seq, such that Pr(DT ) = Pr(seq) and the set of tuples in Q(DT ) is the same as the set
of certain answers with respect to seq, and vice versa.

I. Suppose DT contains tuples t1, . . . , tn, where ti, i ∈ [1, n], has i as the value of key. Then, ti is
consistent with the i-th source tuple in S and some mapping in m. Letmi be this mapping. We then
have a mapping sequence < m1, . . . ,mn >. Here, Pr(DT ) = Πn

i=1Pr(ti) = Πn
i=1Pr(m

i) = Pr(seq).
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Because DT is consistent with DS and seq, the certain answer a must also be an answer tuple
in Q(DT ). We now prove for each tuple a ∈ Q(DT ) and database D′

T that is consistent with DS

and seq, a ∈ Q(D′

T ) (so a is a certain answer with respect to seq). Suppose the i-th tuple ti ∈ DT

is involved in generating a. Because Q(pD∨

T ) does not return null values, ti’s attributes that are
not involved in mi do not contribute to generating a. Tuple t′i has the same value with ti on all
attributes that are involved in mi. Thus, we can also generate a with t′i and a ∈ Q(D′

T ).

II. Consider a mapping sequence < m1, . . . ,mn >. Consider the possible database DT where the
i-th tuple has i as the value of key and is consistent with mi and the i-th source tuple. Obviously,
Pr(seq) = Pr(DT ). We can prove tuples in Q(DT ) are certain answers with respect to seq in the
same way as in I.

Lemma 12.5. Consider the following query

Q: SELECT ‘true’

FROM T, J, T’

WHERE T.a = J.a AND J.b = T’.b

Answering Q with respect to pM is #P-hard in the size of the data. �

Proof. We prove the lemma by reducing the bipartite monotone 2-DNF problem to the above
problem.

Consider a bipartite monotone 2-DNF problem where variables can be partitioned into X =
{x1, . . . , xm} and Y = {y1, . . . , yn}, and ϕ = C1 ∨ · · · ∨ Cl, where each clause Ci has the form
xj ∧ yk, xj ∈ X, yk ∈ Y . We construct the following query-answering problem.

P-mapping: Let pM be a schema p-mapping containing pM and pM ′. Let pM = (S, T,m) be
a p-mapping where S =< a >, T =< a′ > and

m = {({(a, a′)}, .5), (∅, .5)}.

Let pM ′ = (S′, T ′,m′) be a p-mapping where S′ =< b >, T ′ =< b′ > and

m′ = {({(b, b′)}, .5), (∅, .5)}.

Source data: The source relation S contains m tuples: x1, . . . , xm. The source relation S′

contains n tuples: y1, . . . , yn. The relation J contains l tuples. For each clause Ci = xj ∧ yk, there
is a tuple (xj , yk) in J .

Obviously the construction takes polynomial time. We now prove the answer to the query is
tuple true with probability #ϕ

2m+n , where #ϕ is the number of variable assignments that satisfy ϕ.
We prove by showing that for each variable assignment vx1, . . . , vxm, vy1, . . . , vyn that satisfies ϕ,
there exists a mapping sequence seq such that true is a certain answer with respect to seq and the
source instance, and vice versa.

For each variable assignment vx1, . . . , vxm, vy1, . . . , vyn that satisfies ϕ, there must exist j and
k such that vxj =true, vyk =true, and there exists Ci = xj ∧ yk in ϕ. We construct the mapping
sequence for pM such that for each j ∈ [1,m], if vxj =true, mj = ({(a, a′)}, .5), and if vxk =false,
mj = (∅, .5). We construct the mapping sequence for pM ′ such that for each k ∈ [1, n], if vyk =true,
m′k = ({(b, b′)}, .5), and if vyk =false, m′k = (∅, .5). Any target instance that is consistent with
the source instance and {seq, seq′} contains xj in T and yk in T ′. Since Ci ∈ ϕ, J contains tuple
(xj , yk) and so true is a certain answer.
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For each mapping sequence seq for pM and seq′ for pM ′, if true is a certain answer, there must
exist j ∈ [1,m] and k ∈ [1, n], such that xj is in any target instance that is consistent with S and
seq, yk is in any target instance that is consistent with S′ and seq′, and there exists a tuple (xj , yk)
in J . Thus, mj ∈ seq must be ({(a, a′)}, .5) and m′k ∈ seq′ must be ({(b, b′)}, .5). We construct the
assignments vx1, . . . , vxm, vy1, . . . , vyn as follows. For each j ∈ [1,m], if we have mj = ({(a, a′)}, .5)
in seq, xj =true; otherwise, xj =false. For each k ∈ [1, n], if mk = ({(b, b′)}, .5) in seq, yk =true;
otherwise, yk =false. Obviously, the values of xj and yk are true, ϕ contains a term xj ∧ yk, and so
ϕ is satisfied.

Counting the number of variable assignments that satisfy a bipartite monotone 2DNF boolean
formula is #P-complete. Thus, answering query Q is #P-hard.

Note that in Lemma 12.5 Q contains two joins. Indeed, as stated in the following conjecture,
we suspect that even for a query that contains a single join, query answering is also #P-complete.
The proof is still an open problem.

Conjecture 12.6. Let pM be a schema p-mapping containing pM and pM ′. Let pM = (S, T,m)
be a p-mapping where S =< a, b >, T =< c > and

m = {({(a, c)}, .5), ({(b, c)}, .5)}.

Let pM ′ = (S′, T ′,m′) be a p-mapping where S′ =< d >, T ′ =< e > and

m′ = {({(d, e)}, .5), (∅, .5)}.

Consider the following query

Q: SELECT ‘true’

FROM T1, T2

WHERE T1.c=T2.e

Answering Q with respect to pM is #P-hard in the size of the data.

13 Appendix B: Proofs for Other Results

Theorem 4.1. Let pM be a schema p-mapping and let Q be an SPJ query.

Answering Q with respect to pM in by-table semantics is in PTIME in the size of the data and
the mapping. �

Proof. It is trivial that Algorithm ByTable computes all by-table answers. We now consider its
time complexity by examining the time complexity of each step.

Step 1: Assume for each target relation Ti, i ∈ [1, l], the involved p-mapping contains ni possible
mappings. Then, the number of reformulated queries is Πl

i=1ni, polynomial in the size of the
mapping.

Given the restricted class of mappings we consider, we can reformulate the query as follows.
For each of Ti’s attributes t, if there exists an attribute correspondence (S.s, T.t) in mi, we replace
t everywhere with s; otherwise, the reformulated query returns empty result. Let |Q| be the size
of Q. Thus, reformulating a query takes time O(|Q|), and the size of the reformulated query does
not exceed the size of Q.
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Therefore, Step 1 takes time O(Πl
i=1ni · |Q|), which is polynomial in the size of the p-mapping

and does not depend on the size of the data.

Step 2: Answering each reformulated query takes polynomial time in the size of the data and the
number of answer tuples is polynomial in the size of the data. Because there are polynomial number
of answer tuples and each occurs in the answers of no more than Πl

i=1ni queries, summing up the
probabilities for each answer tuple takes time O(Πl

i=1ni). Thus, Step 2 takes polynomial time in
the size of the mapping and the data.

Theorem 4.2. Let pGM be a general p-mapping between a source schema S̄ and a target schema
T̄ . Let DS be an instance of S̄. Let Q be an SPJ query with only equality conditions over T̄ .

The problem of computing Qtable(DS) with respect to pGM is in PTIME in the size of the data
and the mapping. �

Proof. We proceed in two steps to return all by-table answers. In the first step, for each gmi, i ∈
[1, n], we answer Q according to gmi on DS . The certain answer with regard to gmi has probability
Pr(gmi). SPJ queries with only equality conditions are conjunctive queries. According to [1], we
can return all certain answers in polynomial time in the size of the data, and the number of certain
answers is polynomial in the size of the data. Thus, the first step takes polynomial time in the size
of the data and the mapping.

In the second step, we sum up the probabilities of each answer tuple. Because there are a
polynomial number of answer tuples and each occurs in the answers of no more than n reformulated
queries, this step takes polynomial time in the size of the data and the mapping.

Lemma 4.6. Let pM be a schema p-mapping. Let Q be an SPJ query and Qm be Q’s mirror
query with respect to pM . Let DS be the source database and DT be the mirror target of DS with
respect to pM .

Then, t ∈ Qtuple(DS) if and only if t ∈ Qm(DT ) and t does not contain null value. �

Proof. If: We prove t ∈ Qtuple(DS) by showing that we can construct a mapping sequence seq such
that for each target instance D′

T that is consistent with DS and seq, t ∈ Q(D′

T ).

Assume query Q (and so Qm) contains n subgoals (i.e., occurrences of tables in the FROM

clause). Assume we obtain t by joining n tuples t1, . . . , tn ∈ DT , each in the relation of a subgoal.
Consider a relation R that occurs in Q. Assume tk1

, . . . , tkl
, (k1, . . . , kl ∈ [1, n]) are tuples of R (for

different subgoals). Let pM ∈ pM be the p-mapping where R is the target and let S be the source
relation of pM . For each j ∈ [1, l], we denote the id value of tkj

by tkj
.id, and the mapping value

of tkj
by tkj

.mapping. Then, tkj
is consistent with the tkj

.id-th source tuple in S and the mapping
tkj

.mapping.

We construct the mapping sequence of R for seq as follows: (1) for each j ∈ [1, l], the mapping
for the tkj

.id-th tuple is tkj
.mapping; (2) the rest of the mappings are arbitrary mappings in pM .

To ensure the construction is valid, we need to prove that all tuples with the same id value have the
same mapping value. Indeed, for every j, h ∈ [1, l], j 6= h, because tkj

and tkh
satisfy the predicate

(R1.id <> R2.id OR R1.mapping=R2.mapping) in Qm, if tkj
.id=tkh

.id then tkj
.mapping=tkh

.mapping.

We now prove for each target instance D′

T that is consistent with DS and seq, t ∈ Q(D′

T ). For
each ti, i ∈ [1, n], we denote by t′i the tuple in D′

T that is consistent with the ti.id-th source tuple
and the ti.mapping mapping. We denote by R(ti), i ∈ [1, n], the subgoal that ti belongs to. By the
definition of mirror target and also because t does not contain null value, for each attribute of R(ti)
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that is involved in Q, ti has non-null value, and so they are involved in the mapping ti.mapping.
Thus, t′i has the same value for these attributes. So t can be obtained by joining t′1, . . . , t

′

n and
t ∈ Q(D′

T ).

Only if: t ∈ Qtuple(DS), so there exists a mapping sequence seq, such that for each D′

T that
is consistent with DS and seq, t ∈ Q(D′

T ). Consider such a D′

T . Assume t is obtained by joining
tuples t1, . . . , tn ∈ D′

T , and for each i ∈ [1, n], ti is a tuple of subgoal Ri. Assume ti is consistent
with source tuple si and mi. We denote by t′i the instance in DT whose id value refers to si and
mapping value refers to mi. Let Āi be the set of attributes of the subgoal Ri that are involved in
the query. Since t is a “certain answer”, all attributes in Āi must be involved in mi. Thus, ti and
t′i have the same value for these attributes, and all predicates in Q hold on t′1, . . . , t

′

n.

Because D′

T is consistent with DS , for every pair of tuples ti and tj, i, j ∈ [1, n], of the
same relation, ti and tj are either consistent with different source tuples in DS , or are consis-
tent with the same source tuple and the same possible mapping. Thus, predicate R1.id <> R2.id
OR R1.mapping=R2.mapping in the mirror query must hold on t′i and t′j. Thus, t ∈ Qm(DT ).

Theorem 4.5: Given an SPJ query and a schema p-mapping, returning all by-tuple answers
without probabilities is in PTIME with respect to data complexity. �

Proof. According to the previous lemma, we can generate all by-tuple answers by answering the
mirror query on the mirror target. The size of the mirror target is polynomial in the size of the data
and the size of the p-mapping, so answering the mirror query on the mirror target takes polynomial
time.

Lemma 4.8. Let pM be a schema p-mapping between S̄ and T̄ . Let Q be a non-p-join query over
T̄ and let DS be an instance of S̄. Let (t, Pr(t)) be a by-tuple answer with respect to DS and pM .
Let T̄ (t) be the subset of T(DS) such that for each D ∈ T̄ (t), t ∈ Qtable(D). The following two
conditions hold:

1. T̄ (t) 6= ∅;

2. Pr(t) = 1 − ΠD∈T̄ (t),(t,p)∈Qtable(D)(1 − p). �

Proof. We first prove (1). Let T be the relation in Q that is the target of a p-mapping and let pM
be the p-mapping. Let seq be the mapping sequence for pM with respect to which t is a by-tuple
answer. Because Q is a non-p-join query, there is no self join over T . So there must exist a target
tuple, denoted by tt, that is involved in generating t. Assume this target tuple is consistent with
the i-th source tuple and a possible mapping m ∈ pM . We now consider the i-th tuple database
Di in T(DS). There is a target database that is consistent with Di and m, and the database also
contains the tuple tt. Thus, t is a by-table answer with respect to Di and m, so Di ∈ T̄ (t) and
T̄ (t) 6= ∅.

We next prove (2). We denote by m̄(Di) the set of mappings in m, such that for each m ∈ m̄(Di),
t is a certain answer with respect to Di and m. For the by-table answer (t, pi) with respect to Di,
obviously pi =

∑
m∈m̄(Di)

Pr(m).

Let d be the number of tuples in DS . Now consider a sequence seq =< m1, . . . ,md >. As far as
there exists i ∈ [1, d], such that mi ∈ m̄(Di), t is a certain answer with respect to DS and seq . The
probability of all sequences that satisfy the above condition is 1 − Πd

i=1(1 −
∑

m∈m̄(Di)
Pr(m)) =

1 − ΠD∈T̄ (t),(t,p)∈Qtable(D)(1 − p). Thus, Pr(t) = 1 − ΠD∈T̄ (t),(t,p)∈Qtable(D)(1 − p).
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Theorem 4.10. Let pM be a schema p-mapping and let Q be a non-p-join query with respect to
pM .

Answering Q with respect to pM in by-tuple semantics is in PTIME in the size of the data and
the mapping. �

Proof. We first prove Algorithm NonPJoin generates all by-tuple answers. According to Lemma 4.8,
we should first answer Q on each tuple database, and then compute the probabilities for each answer
tuple. In Algorithm NonPJoin, since we introduce the id attribute and return its values, Step 2
indeed generates by-tuple answers for all tuple databases. Finally, Step 3 computes the probability
according to (2) in the lemma.

We next prove Algorithm NonPJoin takes polynomial time in the size of the data and the size
of the mapping. Step 1 goes through each possible mapping to add one more correspondence and
thus takes linear time in the size of the mapping. In addition, the size of the revised mapping is
linear in the size of the original mapping. Since Algorithm ByTable takes polynomial time in the
size of the data and the mapping, so does Step 2 in Algorithm NonPJoin; in addition, the size
of the result is polynomial in the size of the data and the mapping. Step 3 of the algorithm goes
over each result tuple generated from Step 2, doing the projection and computing the probabilities
according to the formula, so takes linear time in the size of the result generated from Step 2, and
so takes also polynomial time in the size of the data and the mapping.

Lemma 4.14. Let pM be a schema p-mapping. Let Q be a projected p-join query with respect to
pM and let J̄ be a maximal p-join partitioning of Q. Let QJ1, . . . , QJn be the p-join components
of Q with respect to J̄ .

For any instance DS of the source schema of pM and result tuple t ∈ Qtuple(DS), the following
two conditions hold:

1. For each i ∈ [1, n], there exists a single tuple ti ∈ Qtuple
Ji (DS), such that t1, . . . , tn generate t

when joined together.

2. Let t1, . . . , tn be the above tuples. Then Pr(t) = Πn
i=1Pr(ti). �

Proof. We first prove (1). The existence of the tuple is obvious. We now prove there exists a
single such tuple for each i ∈ [1, n]. A join component returns all attributes that occur in Q and
the join attributes that join partitions. The definition of maximal p-join partitioning guarantees
for every two partitions, they are joined only on attributes that belong to relations involved in
p-mappings. A projected-p-join query returns all such join attributes, so all attributes returned by
the join component are also returned by Q. Thus, every two different tuples in the result of the
join component lead to different query results.

We now prove (2). Since a partition in a join component contains at most one subgoal that is
the target of a p-mapping in pM , each p-join component is a non-p-join query. For each i ∈ [1, n],
let seqi be the mapping sequences with respect to which ti is a by-tuple answer. Obviously,
Pr(ti) =

∑
seq∈seqi

Pr(seq).

Consider choosing a set of mapping sequences S̄ = {seq1, . . . , seqn}, where seq i ∈ seqi for each
i ∈ [1, n]. Obviously, t is a certain answer with respect to S̄. Because choosing different mapping
sequences for different p-mappings are independent, the probability of S̄ is Πn

i=1Pr(seq i). Thus,
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we have

Pr(t) =
∑

seq1∈seq1,...,seqn∈seqn

Πn
i=1Pr(seq i)

= Πn
i=1

∑

seqi∈seqi

Pr(seq i)

= Πn
i=1Pr(ti)

This proves the claim.

Theorem 4.16. Let pM be a schema p-mapping and let Q be a projected-p-join query with
respect to pM .

Answering Q with respect to pM in by-tuple semantics is in PTIME in the size of the data and
the mapping. �

Proof. We first prove Algorithm ProjectedPJoin generates all by-tuple answers for projected-p-
join queries. First, it is trivial to verify that the partitioning generated by step 1 satisfies the two
conditions of a p-join partitioning and is maximal. Then, step 2 and step 3 compute the probability
for each by-tuple answer according to Lemma 4.14.

We next prove it takes polynomial time in the size of the mapping and in the size of the data.
Step 1 takes time polynomial in the size of the query, and is independent of the size of the mapping
and the data. The number of p-join components is linear in the size of the query and each is smaller
than the original query. Since Algorithm NonPJoin takes polynomial time in the size of the data
and the size of the mapping, Step 2 takes polynomial time in the size of the mapping and the size
of the data too, and the size of each result is polynomial in size of the data and the mapping.
Finally, joining the results from Step 2 takes polynomial time in the size of the results, and so also
polynomial in the size of the data and the mapping.

Theorem 6.3. Let gpM be a schema group p-mapping and let Q be an SPJ query. The mapping
complexity of answering Q with respect to gpM in both by-table semantics and by-tuple semantics
is in PTIME. �

Proof. We first consider by-table semantics and then consider by-tuple semantics. For each se-
mantics, we prove the theorem by first describing the query-answering algorithm, then proving the
algorithm generates the correct answer, and next analyzing the complexity of the algorithm.

By-table semantics: I. First, we describe the algorithm that we answer query Q with respect to
the group p-mapping gpM . Assume Q’s FROM clause contains relations T1, . . . , Tl. For each i ∈ [1, l],
assume Ti is involved in group p-mapping gpMi, which contains gi groups (if Ti is not involved
in any group p-mapping, we assume it is involved in an identity p-mapping that corresponds each
attribute with itself). The algorithm proceeds in five steps.

Step 1. We first partition all target attributes for T1, . . . , Tl as follows. First, initialize each partition
to contain attributes in one group (there are

∑l
i=1 gi groups). Then, for each pair of attributes a1

and a2 that occur in the same predicate in Q, we merge the two groups that t1 and t2 belong to.
We call the result partitioning an independence partitioning with respect to Q and gpM .

Step 2. For each partition p in an independence partitioning, if p contains attributes that occur in
Q, we generate a sub-query of Q as follows. (1) The SELECT clause contains all variables in Q that
are included in p, and an id column for each relation that is involved in p (we assume each tuple

36



www.manaraa.com

contains an identifier column id; in practice, we can use the key attribute of the tuple in place of
id); (2) The FROM clause contains all relations that are involved in p; and (3) The WHERE clause
contains only predicates that involve attributes in p. The query is called the independence query
of p and is denoted by Q(p).

Step 3. For each partition p, let pM1, . . . , pMn be the p-mappings for the group of attributes
involved in p. For each m1 ∈ pM1, . . . ,m

n ∈ pMn, rewrite Q(p) regarding m1, . . . ,mn and answer
the rewritten query on the source data. For each returned tuple, assign Πn

i=1m
i as the probability

and add n columns mapping1, . . . , mappingn, where the column mappingi, i ∈ [1, n], has the identifier
for mi as the value. Union all result tuples.

Step 4. Join the results of the sub-queries on the id attributes. Assume the result tuple t is obtained
by joining t1, . . . , tk, then Pr(t) = Πk

i=1Pr(tk).

Step 5. For tuples that have the same values, assuming to be tuple t, for attributes on Q’s re-
turned attributes but different values for the mapping attributes, sum up their probabilities as the
probability for the result tuple t.

II. We now prove the algorithm returns the correct by-table answers. For each result answer
tuple a, we should add up the probabilities of the possible mappings with respect to which a is
generated. This is done in Step 5. So we only need to show that given a specific combination of
mappings, the first four steps generate the same answer tuples as with normal p-mappings. The
partitioning in Step 1 guarantees that different independence queries involve different p-mappings
and so Step 2 and 3 generate the correct answer for each independence query. Step 4 joins results
of the sub-queries on the id attributes; thus, for each source tuple, the first four steps generate the
same answer tuple as with normal p-mappings. This proves the claim.

III. We next analyze the time complexity of the algorithm. The first two steps take polynomial
time in the size of the mapping and the number of sub-queries generated by Step 2 is polynomial
in the size of the mapping. Step 3 answers each sub-query in polynomial time in the size of the
mapping and the result is polynomial in the size of the mapping. Step 4 joins a set of results from
Step 3, where the number of the results and the size of each result is polynomial in the size of the
mapping, so it takes polynomial time in the size of the mapping too and the size of the generated
result is also polynomial in the size of the mapping. Finally, Step 5 takes polynomial time in the
size of the result generated in Step 4 and so takes polynomial time in the size of the mapping. This
proves the claim.

By-tuple semantics: First, we describe the algorithm that we answer query Q with respect to
the group p-mapping gpM . The algorithm proceeds in five steps and the first two steps are the
same as in by-table semantics.

Step 3. For each partition p, let pM1, . . . , pMn be the p-mappings for the group of attributes
involved in p. For each mapping sequence seq over pM1, . . . , pMn, answer Q(p) with respect to seq
in by-tuple semantics. For each returned tuple, assign Pr(seq) as the probability and add a column
seq with an identifier of seq as the value.

Step 4. Join the results of the sub-queries on the id attributes. Assume the result tuple t is obtained
by joining t1, . . . , tk, then Pr(t) = Πk

i=1Pr(tk).

Step 5. Let t1, . . . , tn be the tuples that have the same values, tuple t, for attributes on Q’s returned
attributes but different values for the seq attributes, sum up their probabilities as the probability
for the result tuple t.

We can verify the correctness of the algorithm and analyze the time complexity in the same
way as in by-table semantics.
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Proposition 6.4. For each n ≥ 1, Mn+1
ST ⊂ Mn

ST . �

Proof. We first prove for each n ≥ 1, Mn+1
ST ⊆ Mn

ST , and then prove there exists an instance in
Mn

ST that does not have an equivalent instance in Mn+1
ST .

(1) We prove Mn+1
ST ⊆ Mn

ST by showing for each (n + 1)-group p-mapping we can find a
n-group p-mapping equivalent to it. Consider an instance gpM = (S, T, pM ) ∈ Mn+1

ST , where
pM = {pM1, . . . , pMn+1}. We show how we can construct an instance gpM ′ ∈ Mn

ST that is
equivalent to gpM . Consider merging pM1 = (S1, T1,m1) and pM2 = (S2, T2,m2) and generating
a probabilistic mapping pM1−2 = (S1 ∪ S2, T1 ∪ T2,m1−2), where m1−2 includes the Cartesian
product of the mappings in m1 and m2. Consider the n-group p-mapping gpM ′ = (S, T, pM ′),
where pM ′ = {pM1−2, pM3, . . . , pMn+1}. Then, gpM and gpM ′ describe the same mapping.

(2) We now show how we can construct an instance in Mn
ST that does not have an equiv-

alent instance in Mn+1
ST . If S and T contain less than n attributes, Mn

ST = ∅ and the claim
holds. Otherwise, we partition attributes in S and T into {{s1}, . . . , {sn−1}, {sn, . . . , sm}} and
{{t1}, . . . , {tn−1}, {tn, . . . , tl}}. Without losing generality, we assume m ≤ l. For each i ∈ [1, n−1],
we define

mi = {({(si, ti)}, 0.8), (∅, 0.2)}.

In addition, we define

mn = {({(sn, tn)},
1

(m− n+ 1)
), . . . , ({(sm, tn)},

1

(m− n+ 1)
)}.

We cannot further partition S into n+1 subsets such that attributes in different subsets correspond
to different attributes in T . Thus, we cannot find a (n+ 1)-group p-mapping equivalent to it.

Theorem 6.5. Given a p-mapping pM = (S, T,m), we can find in polynomial time in the size of
pM the maximal n and an n-group p-mapping gpM , such that gpM is equivalent to pM . �

Proof. We prove the theorem by first presenting an algorithm that finds the maximal n and the
equivalent n-group p-mapping gpM , then proving the correctness of the algorithm, and next ana-
lyzing its time complexity.

I. We first present the algorithm that takes a p-mapping pM = (S, T,m), finds the maximal n
and the n-group p-mapping that is equivalent to pM .

Step 1. First, partition attributes in S and T . Initialize the partitions such that each contains a
single attribute in S or T . Then for each attribute correspondence (s, t) occurring in a possible
mapping, if s and t are in different partitions, merge the two partitions. Let P = {p1, . . . , pn} be
the result partitioning.

Step 2. For each partition pi, i ∈ [1, n], and each m ∈ m, select the correspondences in m that
involve only attributes in pi, use them to construct a sub-mapping, and assign Pr(m) to the sub-
mapping. We compute the marginal probability of each sub-mapping.

Step 3. For each partition pi, i ∈ [1, n], examine if its possible mappings are independent of the
possible mappings for the rest of the partitions. Specifically, for each partition pj , j > i, if there
exists a possible mapping m for pi and a possible mapping m′ for pj, such that Pr(m|m′) 6= Pr(m),
merge pi into pj. For the new partition pj , update its possible sub-mappings and their marginal
probabilities. Step 3 generates a set of partitions, each with a set of sub-mappings and their
probabilities.

Step 4. Each partition generated in Step 3 is associated with a p-mapping. The set of all p-mappings
forms the group p-mapping gpM that is equivalent to pM .
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II. We now prove the correctness of the algorithm. It is easy to prove gpM is equivalent to
pM . Assume gpM is an n-group p-mapping. We next prove n is maximal. Consider another group
p-mapping gpM ′. We now prove for each p-mapping in gpM ′, it either contains all attributes in
a partition generated in Step 3 or contains none of them. According to the definition of group
p-mapping, each p-mapping in gpM ′ must contain either all attributes or none of the attributes
in a partition in P. In addition, every two partitions in P that are merged in Step 3 are not
independent and have to be in the same p-mapping in gpM ′ too. This proves the claim.

III. We next consider the time complexity of the algorithm. Let m be the number of mappings
in pM , and a be the minimum number of attributes in R and in S. Step 1 considers each attribute
correspondence in each possible mapping. A mapping contains no more than a attribute corre-
spondences, so Step 1 takes time O(ma). Step 2 considers each possible mapping for each partition
to generate sub-mappings. The number of partitions cannot exceed a, so Step 2 also takes time
O(ma). Step 3 considers each pair of partitions. and takes time O(ma2). Finally, Step 4 outputs
the results and takes time O(ma). Overall, the algorithm takes time O(ma2), which is polynomial
in the size of the full-distribution instance.

Theorem 6.9. Let pC be a schema p-correspondence, and Q be an SPJ query. Then, Q is p-
mapping independent with respect to pC if and only if for each pC ⊆ pC, Q is a single-attribute
query with respect to pC. �

Proof. We prove for the case when there is a single p-correspondence in pC and it is easy to
generalize our proof to the case when there are multiple p-correspondences in pC.

If: Let pM1 and pM2 be two p-mappings over S and T where pC(pM1) = pC(pM2). Let DS be
a database of schema S. Consider a query Q over T . Let tj be the only attribute involved in
query Q. We prove Q(DS) is the same with respect to pM1 and pM2 in both by-table and by-tuple
semantics.

We first consider by-table semantics. Assume S has n attributes s1, . . . , sn. We partition
all possible mappings in pM1 into m̄0, . . . , m̄n, such that for any m ∈ m̄i, i ∈ [1, n], m maps
attribute si to tj , and for any m ∈ m̄0, m does not map any attribute in S to tj . Thus, for each
i ∈ [1, n], P r(m̄i) = Pr(cij).

Consider a tuple t. Assume t is an answer tuple with respect to a subset of possible mappings
m̄ ⊆ m. Because Q contains only attribute tj, for each i ∈ [0, n], either m̄i ⊆ m̄ or m̄i ∩ m̄ = ∅.
Let m̄k1

, . . . , m̄kl
, k1, . . . , kl ∈ [0, n], be the subsets of m̄ such that m̄kj

⊆ m̄ for any j ∈ [1, l]. We
have

Pr(t) =

l∑

i=1

Pr(m̄ki
) =

l∑

i=1

Pr(ckij).

Now consider pM2. We partition its possible mappings in the same way and obtain m̄′

0, . . . , m̄
′
n.

Since Q contains only attribute tj, for each i ∈ [0, n], the result of Q with respect to m′ ∈ m̄′

i is the
same as the result with respect to m ∈ m̄i. Therefore, the probability of t with respect to pM2 is

Pr(t)′ =

l∑

i=1

Pr(m̄′

ki
) =

l∑

i=1

Pr(ckij).

Thus, Pr(t) = Pr(t)′ and this proves the claim.

We can prove the claim for by-tuple semantics in a similar way where we partition mapping
sequences. We omit the proof here.
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Only if: We prove by showing that for every query Q that contains more than one attribute in
a relation being involved in a p-correspondence, there exist p-mappings pM1 and pM2 and source
instance DS , such that Q(DS) obtains different results with respect to pM1 and pM2.

Assume query Q contains attributes a′ and b′ of T . Consider two p-mappings pM1 and pM2,
where

pM1 = {({(a, a′), (b, b′)}, .5), ({(a, a′)}, .3), ({(b, b′)}, .2)}

pM2 = {({(a, a′), (b, b′)}, .6), ({(a, a′)}, .2), ({(b, b′)}, .1), (∅, .1)}

One can verify that pC(pM1) = pC(pM2).

Consider a database DS , such that for each tuple of the source relation in pM1 and pM2,
the values for attributes a and b satisfy the predicates in Q. Since only when the possible map-
ping {(a, a′), (b, b′)} is applied can we generate valid answer tuples, but the possible mapping
{(a, a′), (b, b′)} has different probabilities in pM1 and pM2, Q(DS) obtains different results with
respect to pM1 and pM2 in both semantics.

Corollary 6.11. Let pC be a schema p-correspondence, and Q be a p-mapping independent SPJ
query with respect to pC. The mapping complexity of answering Q with respect to pC in both
by-table semantics and by-tuple semantics is in PTIME. �

Proof. By-table: We revise algorithm By-Table, which takes polynomial time in the size of the
schema p-mapping, to compute answers with respect to schema p-correspondences. At the place
where we consider a possible mapping in the algorithm, we revise to consider a possible attribute
correspondence. Obviously the revised algorithm generates the correct by-table answers and takes
polynomial time in the size of the mapping.

By-tuple: We revise the algorithm in the proof of Theorem 4.4, which takes polynomial time in
the size of the schema p-mapping, to compute answers with respect to schema p-correspondences.
Everywhere we consider a possible mapping in the algorithm, we revise to consider a possible
attribute correspondence. Obviously the revised algorithm generates the correct by-tuple answers
and takes polynomial time in the size of the mapping.

Theorem 6.13. There exists a schema p-mapping pM and a query Q, such that answering Q with
respect to pM in by-table semantics takes exponential time in size of pM ’s Bayes-Net representation.
�

Proof. Consider pM in Example 6.12. Consider the following query:

SELECT t1, ..., tn

FROM T

Consider a source instance DS with one tuple, where each attribute value in the tuple is distinct.
There are 2n tuples in Qtable(DS). To enumerate all these answers takes time O(2n), which is
exponential in the size of pM ’s Bayes-Net representation.

Theorem 8.1. Let pCM be a schema probabilistic complex mapping between schemas S̄ and T̄ .
Let DS be an instance of S̄. Let Q be an SPJ query over T̄ . The data complexity and mapping
complexity of computing Qtable(DS) with respect to pCM are PTIME. The data complexity of
computingQtuple(DS) with respect to pCM is #P-complete. The mapping complexity of computing
Qtuple(DS) with respect to pCM is in PTIME. �
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Proof. We prove the theorem by showing that we can construct a normal schema p-mapping from
pCM and answer a query with respect to the normal p-mapping. For each pCM ∈ pCM between
source S(s1, . . . , sm) and target T (t1, . . . , tn), we construct a normal p-mapping pM = (S′, T ′,m)
as follows. The source S′ contains all elements of the power set of {s1, . . . , sm} and the target T ′

contains all elements of the power set of {t1, . . . , tn}. For each complex mapping cm ∈ pCM , we
construct a mapping m such that for each set correspondence between S and T in cm, m contains
an attribute correspondence between the corresponding sets in S′ and T ′. Because each attribute
occurs in one correspondence in cm, m is a one-to-one mapping. The result pM contains the same
number of possible mappings and each mapping contains the same number of correspondences as
pCM . We denote the result schema p-mapping by pM . Query answering with respect to pCM gets
the same result as with respect to pM and so the complexity results for normal schema p-mappings
carry over.

Theorem 8.2. Let cpM be a schema conditional p-mapping between S̄ and T̄ . Let DS be an
instance of S̄. Let Q be an SPJ query over T̄ . The problem of computing Qtuple(DS) with respect
to cpM is in PTIME in the size of the mapping and #P-complete in the size of the data. �

Proof. By-tuple query answering with respect to schema conditional p-mappings is essentially the
same as that with respect to normal p-mappings, where for each source tuple, we first decide which
condition it satisfies and then consider applying possible mappings associated with that condition.
Thus, the complexity of by-tuple query-answering with respect to normal schema p-mappings carries
over.
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